

RIOE S

Measurement of $R_{K} = \Gamma(Ke2) / \Gamma(K\mu2)$

Introduction: R_K in and beyond SM. Measurement of $R_K = \Gamma(Ke2(\gamma))/\Gamma(K\mu 2(\gamma))$ at KLOE.

- Based on 2.2 fb⁻¹ of data collected at e^+e^- collider Da Φ ne.

- BR($\phi \rightarrow K^+K^-$) ~ 0.49, yielding 3×10⁹ K⁺K⁻ pairs, ~50,000 Ke2 decays in FV

- Signal selection; analysis basic principle
- Background rejection
- Ke2 event counting; with systematics
- Reconstruction efficiencies
- Results on R_K.

- SM prediction with 0.04% precision, benefits of cancellation of hadronic uncertainties (no f_K): $R_K = 2.477(1) \times 10^{-5}$ [*Cirigliano Rosell arXiv:0707:4464*].
- Helicity suppression can boost NP [Masiero-Paradisi-Petronzio PRD74(2006)011701].

LFV can give O(1%) deviation from SM (Δ_R^{31} ~5×10⁻⁴, tan β ~40, m_H~ 500 GeV)

- Exp. accuracy on R_K (before KLOE and NA62 results) at 5% level.
- New measurements of R_K can be very interesting, if error at 1% level or better.

Entering the precision realm for R_K

Main actors (experiments) in the challenge to push down precision on R_K :

NA48/2: preliminary result with 2003 data: $R_{K}=2.416(43)_{stat}(24)_{syst}10^{-5}$, from ~4000 Ke2 candidates (2% accuracy) NA48/2: preliminary result with 2004 data: $R_{K}=2.455(45)_{stat}(41)_{syst}10^{-5}$, from ~4000 Ke2 candidates from special minimum bias run (3% accuracy)

KLOE: preliminary result with 2001-2005 data: $R_{K}=2.55(5)_{stat}(5)_{syst}10^{-5}$, from ~8000 Ke2 candidates (3% accuracy), perspectives to reach 1% error after analysis completion.

NA62 (ex NA48): **collected** ~**150,000 Ke2** events in dedicated 2007 run, aims to breaking the 1% precision wall, possibly reaching <~0.5%

Ke2(%): signal definition

- Define as "signal" events with $E_{\gamma} < 10$ MeV.
- Evaluating **IB** spectrum (O(α)+resummation of leading logs) obtain a 0.0625(5) correction for the IB tail.
- Under 10 MeV, the **DE** contribution is expected to be negligible.

Charged kaon at KLOE

 $p_{K} \sim 100 \text{ MeV}$ $\lambda \sim 90 \text{ cm} (56\% \text{ of } \text{K}^{\pm} \text{ decay in DC}).$

Kaon momentum measured (event by event) with 1 MeV resolution in DC.

Constraints from ϕ 2-body decay.

Particle ID with kinematics and ToF.

Tagging provides unbiased control samples for efficiency measurement.

$$R_{K} = \frac{N_{Ke2}}{N_{K\mu2}} \left[\frac{\varepsilon_{K\mu2}^{\text{REC}}}{\varepsilon_{Ke2}^{\text{REC}}} C^{\text{TRG}} C^{\text{REC}} \right] \frac{1}{\epsilon^{\text{IB}}}$$

1) Select kinks in DC (~ fiducial volume)

- K track from IP

- secondary with p_{lep}>180 MeV for decays occurring in the FV; the reconstruction efficiency is ~51%.

2) No tag required on the opposite
"hemisphere" (as we usually do!)
→ gain ×4 of statistics

3) Exploit tracking of K and
secondary: assuming
$$m_v=0$$
 get M^2_{1ep} :
 $M^2_{1ep} = (E_K - p_{miss})^2 - p^2_{1ep}$.
Around $M^2_{1ep}=0$ we get $S/B \sim 10^{-3}$,
mainly due to tails on the momentum
resolution of Kµ2 events.
 $M^2_{1ep} = (E_K - p_{miss})^2 - p^2_{1ep}$.
 $M^2_{1ep} = 0$ we get $S/B \sim 10^{-3}$,
 $M^2_{1ep} = (MeV)$
 $M^2_{1ep} (MeV^2)$

Background composition: $K\mu 2$ events with bad p_K , p_{lep} , or decay vertex position reconstruction

- require good quality vertex and secondary track (χ^2 cut);
- reduce $K_{\mu 2}$ tails cutting on the error on M^2_{lep} expected from track parameters;
- quality cuts for K: the kinematic of $\phi \rightarrow K^+K^-$ 2-body decay allows redundant p_K determination.

Background rejection (track quality)

- after cuts, we accept~35% of decays in the FV
- most of Ke2 events lost have bad resolution
- S/B ~ 1/20, not enough!
- require the lepton track to be extrapolable to the calorimeter surface and to be associated to an energy release (cluster).

Background rejection (PID)

 Particle ID exploits EMC granularity (energy deposits into 5 layers in depth):

the energy distribution and the position along the shower axis of all cells associated to the cluster allow for e/μ PID (define 11 descriptive variables).

2) Add E/p and ToF.

3) Combine all information in a neural network (NN).

Background rejection (PID)

• Use a pure sample of $K_L e3$ to correct cell response in MC.

• $K_L e^3$ and $K \mu 2$ for NN training.

Background rejection (PID)

Select a region with good S/B ratio in the $M_{lep}^2 - NN_{out}$ plane

K_{e2} event counting

Two-dimensional binned likelihood fit in the M_{lep}^2 -NN_{out} plane in the region -4000<M_{lep}²<6100 and 0.86<NN_{out}<1.02

We count **7060 (102) Ke2+ 6750 (101) Ke2-** (σ_{STAT} =1%, **0.85% from Ke2**)

K_{e2} event counting

Two-dimensional binned likelihood fit in the M_{lep}^2 -NN_{out} plane in the region -4000<M_{lep}²<6100 and 0.86<NN_{out}<1.02

We count **7060 (102) Ke2+ 6750 (101) Ke2-** (σ_{STAT} =1%, **0.85% from Ke2**)

K_{e2} event counting: systematics

Repeat fit with different values of $\max(M^2_{lep})$ and $\min(NN_{out})$: vary significantly (×20) bkg contamination + lever arm.

K_{e2} event counting: systematics

Repeat fit with different values of $\max(M^2_{lep})$ and $\min(NN_{out})$: vary significantly (×20) bkg contamination + lever arm.

K_{e2} event counting: systematics

We change by a factor of 20 the amount of bkg falling in the fit region by moving

- min(NNout)
- max(M^2_{lep}).

Signal counts change by 15%.

From the pulls of the R_K measurements we evaluated a 0.3% systematic error.

min(NNout)

• Analysis inclusive of photons in the final state. In our fi region we expect:

The ratio of Ke2 to Kµ2 efficiencies is evaluated with MC and corrected using data control samples

1) kink reconstruction (tracking): K⁺e3 and K⁺μ2 data control samples selected using the tagging and additional criteria based on EMC information only (next slide)

2) cluster efficiency (e, μ): K_L control samples, selected with tagging and kinematic criteria based on DC information only

3) trigger: exploit the OR combination of EMC and DC triggers (almost uncorrelated); downscaled samples are used to measure efficiencies for cosmic-ray and machine background vetoes

We obtain: $\epsilon(\text{Ke2})/\epsilon(\text{K}\mu2) = 0.946 \pm 0.007$

Control samples for tracking efficiencies

Just an example: selection of K⁺e3 control sample to measure tracking efficiency for electrons

0) Tagging decay (K μ 2 or K π 2);

1) Tagging decay (K μ 2 or K π 2): reconstruction of the opposite charge kaon flight path;

2) Using a ToF technique a $\pi^0 \rightarrow \gamma \gamma$ decay vertex is reconstructed along the K decay path;

3) Require an electron cluster: p_e estimated from a kinematic fit with constraints on E/p, ToF, cluster position, and E_{miss} - P_{miss} .

Evaluate the K + electron kink reconstruction efficiency

Control samples for tracking efficiencies

Systematics and checks

Cross-check on efficiencies: use same algorithms to measure $R_{13} = \Gamma(Ke3)/\Gamma(K\mu3)$

 $\begin{array}{l} R_{13} = 1.507 \ \pm \ 0.005 \ for \ K^+ \\ R_{13} = 1.510 \ \pm \ 0.006 \ for \ K^- \end{array}$

SM expectation (FlaviaNet) $R_{13} = 1.506 \pm 0.003$

Summary of systematics:

Tracking	0.6%	K ⁺ control samples
Trigger	0.4%	downscaled events
syst on Ke2 counts	0.3%	fit stability
Ke2γ DE component	0.2%	measurement on data
Clustering for e, µ	0.2%	K _L control samples
Total Syst	0.8%	
	(0.6% fi	rom statistics of control sam

Test Lepton Flavor Violation with Ke2 at KLOE – B. Sciascia – Kaon09, Tsukuba

 R_{κ} : KLOE result

R_K: sensitivity to new physics

Sensitivity shown as 95% CL excluded regions in the tan β -M_H plane, for different values of the LFV effective coupling, $\Delta_{13} = 10^{-3}$, 5 × 10⁻⁴, 10⁻⁴

Conclusions

• Using 2.2 fb⁻¹ of data acquired at the ϕ peak, KLOE measured: $R_{K} = (2.493 \pm 0.025_{stat} \pm 0.019_{syst}) \times 10^{-5}$

• This results confirms the SM prediction within the 1.3% accuracy

• The error is dominated by the counting and the control samples statistics.

• Can contribute to set constraints on the parameter space of MSSM with LFV.

$K_{\mu 2}$: sensitivity to new physics

Scalar currents, e.g. due to Higgs exchange, affect $K \rightarrow \mu \nu$ width

From direct searches (LEP), M_{H^+} > 80 GeV, tan β > 2

Kµ2 event counting

Fit to M^2_{lept} distribution: 300 million Kµ2 events per charge Background under the peak <0.1%, from MC

- 1) E/P;
- 2) 1st momentum of the distribution of the longitudinal energy path deposition (cluster centroid depth) evaluated at cell level;
- 3) the 3td momentum of the longitudinal energy path deposistion (skewness);
- 4,5) asymmetry of energy lost in first two innermost (outermost) planes;
- 6) RMS of energy plane distribution;
- 7) energy lost in the 1st plane;
- 8) number of the plane with larges energy deposition;
- 9) largest energy deposition in a single plane;
- 10) slope of the E_int(x) energy distribution;
- curvature of the E_int(x) energy distribution;
- 12) de/dx i.e. value of $E_int(x)/x|x<15$ cm

Additional separation using ToF information: difference δ T of the time measured in the EMC with that expected from the DC measurements in electron mass hypothesis has been included in the final version of the NN: 12-25-20-1 becomes 13-25-20-1

For Ke2 γ generator, the IB component is described with χ_{PT} at O(^e2p²) including resummation of leading logaritms, while DE component is described with χ_{PT} at O(e²p⁴).

Ke2 y process

Dalitz density

 $\frac{d\Gamma(K \to e \, \nu \gamma)}{dx dy} = \rho_{IB}(x, y) + \rho_{SD}(x, y) + \rho_{INT}(x, y)$ helicity negligible

suppressed

 $x = 2E_{\gamma}/M_{\kappa}$ $y = 2E_{e}/M_{\kappa}$ E_{γ} , E_{e} in the K rest frame

Structure Dependent

$$\rho_{SD}(x,y) = \frac{G_F^2 |V_{us}|^2 \alpha}{64\pi^2} M_K^5 \left((f_V + f_A)^2 f_{SD+}(x,y) + (f_V - f_A)^2 f_{SD-}(x,y) \right)$$

 $f_V f_A$: effective vector and axial couplings

 $SD + = V + A : \gamma \text{ polarization} +$ $SD = V - A : \gamma polarization -$

Ke2 y: theory predictions

Chen, Geng, Lih 08

electron peaks at 250 MeV, e-γ antiparallel electron peaks at 100 MeV: **very bad**, since Ke3 endpoint is 230 MeV