Studies of the K_{S} and K_{L} lifetimes and $BR(K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi)$ with KLOE

<u>Simona S. Bocchetta</u>* on behalf of the KLOE Collaboration **KAON09 Tsukuba June 9th 2009**

* INFN and University of "Roma Tre"

Outline

- DAΦNE and KLOE experiment
- study of the K_s lifetime
- K_L lifetime: preliminary update with new data
- study of the BR(K⁺ $\rightarrow \pi^+ \pi^- \pi^+$)

*The DA*Φ*NE* e⁺e⁻ *collider*

- Collisions at cm energy around $\sqrt{s} \sim 1019.4$ MeV (m_{ϕ})
- Angle between the
 beams @ IP: α ~π-2*12.5 mrad
- Residual laboratory momentum of \$\op\$: p_\$~13 MeV
- Cross section for φ
 production @ peak: σ_φ ~ 3.1µb

Summary of KLOE data taking

Integrated luminosity L = 2.5 fb^{-1} about $2.5 \times 10^9 \text{ K}_{\text{s}}\text{K}_{\text{L}}$; $3.6 \times 10^9 \text{ K}^+\text{K}^-$

Kaon Physics at the *\phi* resonance

the ϕ decay at rest provides monochromatic and pure kaon beams

they are produced in a pure $J^{PC} = 1^{-1}$ state $\sigma(e^+e^- \rightarrow \phi) \approx 3 \,\mu b$ $K_s, K^+ \longleftarrow \phi \longrightarrow K_L, K^$ detection of a $K_s (K_L)$ guarantees the presence of a $K_L (K_s)$ with known momentum and direction (the same for K^+K^-) \Rightarrow tagging pure kaon beam obtained \Rightarrow normalization (N_{tag}) sample \Rightarrow allows precision measurements of absolute BRs

 K^+K^- BR \cong 49% p_{lab} = 127 MeV/c λ_{\pm} = 95 cm $\begin{array}{l} {\sf K}_{\sf L}{\sf K}_{\sf S} \\ {\sf BR} \cong 34\% \hspace{0.5cm} ; \hspace{0.5cm} p_{lab} = 110 \hspace{0.5cm} {\sf MeV/c} \\ \lambda_{S} = 0.6 \hspace{0.5cm} {\sf cm} \hspace{0.5cm} {\sf K}_{\sf S} \hspace{0.5cm} {\sf decays} \hspace{0.5cm} {\sf near} \hspace{0.5cm} {\sf interaction} \hspace{0.5cm} {\sf point} \\ \lambda_{L} = 340 \hspace{0.5cm} {\sf cm} \hspace{0.5cm} {\sf Large} \hspace{0.5cm} {\sf detector} \hspace{0.5cm} {\sf to} \hspace{0.5cm} {\sf keep} \\ {\sf reasonable} \hspace{0.5cm} {\sf acceptance} \hspace{0.5cm} {\sf for} \hspace{0.5cm} {\sf K}_{\sf L} \hspace{0.5cm} {\sf decays} \hspace{0.5cm} (\sim \! 0.5 \hspace{0.5cm} \lambda_{\sf L}) \hspace{0.5cm} {\scriptstyle 5cm} \end{array}$

The KLOE experiment

Be beam pipe (0.5 mm thick), r =10 cm (K_s fiducial volume) Instrumented permanent magnet quadrupoles (32 PMT's)

Drift chamber (4 m Ø × 3.3 m) 90% He + 10% IsoB, CF frame 12582 stereo sense wires

Electromagnetic calorimeter Lead/scintillating fibers 4880 PMT's, cover 98% of the solid angle

Superconducting coil B = 0.52 T (∫Bdl = 2 T·m)

KLOE detector performance

$$\begin{split} \sigma_{\text{E}}/\text{E} &\cong 5.7\% \ /\sqrt{\text{E}(\text{GeV})} \\ \sigma_{\text{+}} &\cong 57 \text{ ps } /\sqrt{\text{E}(\text{GeV})} \oplus 140 \text{ ps} \\ \sigma_{\gamma\gamma} &\sim 2 \text{ cm} \ (\pi^{\text{o}} \text{ from } \text{K}_{\text{L}} \to \pi^{+}\pi^{-}\pi^{\text{o}}) \end{split}$$

$$\begin{split} &\sigma_p/p \cong 0.4 \ \% \ (\text{tracks with } \theta > 45^\circ) \\ &\sigma_x^{\text{hit}} \cong 150 \ \mu\text{m} \ (xy), \ 2 \ \text{mm} \ (z) \\ &\sigma_x^{\text{vertex}} \sim 3 \ \text{mm} \end{split}$$

Reconstruction of $K_S \rightarrow \pi^+ \pi^-$

- $K_s \rightarrow \pi^+ \pi^-$ decay selection:
- 2 tracks of opposite sign
- invariant mass consistent with M_{K}

 $\epsilon \sim 70\%$ (mainly geometrical) K_s angular resolution $\sim 1^\circ$ K_s momentum resolution of 1 MeV from track momenta $\mathbf{p}_{KS} = \mathbf{p}_{\pi+} + \mathbf{p}_{\pi-}^8$

K_s momentum determination

At a ϕ -factory, we have a redundant $\mathbf{p}_{_{KS}}$ measurement For each event we measure: Data 1) \mathbf{p}_{KS} from \sqrt{s} and from kinematics - Montecarlo of $\phi \rightarrow KK$ two-body decay resolution ~ 1 MeV 4 dominated by beam energy spread 3 Initial state 2) \mathbf{p}_{KS} from pion momenta 2 radiation tail measurements in the drift 1 chamber $\sigma \sim 1 \text{ MeV}$ Requiring consistency between 8 10 2 6 momentum measurements guarantees MeV dp=pk_2p-pk_boost good track quality

\$ decay point

A better determination of 10000decay point along the beam line (z) is evaluated event $b\bar{y}^{000}$ event by using the point of closest approach of K_s line of 0^{-2} flight to the beam axis line

Measurement of the K_S lifetime

Motivation:

- first measurement with pure K_s beam and with an event-by-event knowledge of K_s momentum
- KLOE is well suited to perform τ_s measurement as a function of sidereal time which is interesting to test QM, CPT and Lorentz invariance
 V_{us} from K_s with KLOE data (we measured BR(K_se3) at 1.3%, we can reach 0.5% on the whole data set)

Method:

lifetime obtained from fit to proper time t^{*} distribution of $K_s \rightarrow \pi^+ \pi^-$ decay $t^* = \frac{L}{\beta \gamma c} = \frac{LM_K}{pc}$

Raw Time resolution

$$t^* = \frac{L}{\beta \gamma c} = \frac{LM_K}{pc}$$

This first attempt produces a resolution function *not centered around zero*

 \rightarrow not appropriate for a < 0.1% measurement! ²⁰

So see next transparency...

13

Improvement of K_s decay length resolution

- 1) Further improve reconstruction of IP event-by-event using full geometrical fit
- 2) Optimize the selection criteria, requiring pions to decay at large angle with respect to the K_s line of flight
- 3) Use only well measured tracks: cut on the χ^2 value from the track fit

20 million events selected in 600 pb⁻¹

Path length resolution improved by factor of 3

Fit to the lifetime

Since resolution depends on K beam direction, fit is done for each of 270 bins in $\cos\theta_{\rm K}$ and $\phi_{\rm K}$.

This is also necessary to measure τ_s as a function of sidereal coordinates

(5 parameters: lifetime, 2 normalizations, 2 widths)

Systematics

Source	Value $(\tau / \tau_s \ge 10^{-4})$
Selection cuts	3.3
$\cos\theta_{\rm K}$ cut	5.7
Momentum calibration	0.4
Fit range	5.0

We expect a total error competitive with the precise measurements from KTeV and NA48

K_L lifetime with $K_L \to \pi^0 \pi^0 \pi^0$ decay channel

K_L lifetime measurement

 $\begin{array}{ll} \mbox{direct measurement: } (d\tau/\tau \sim 0.6\%) & \tau_{\rm L} = (50.92 \pm 0.17 \pm 0.25) \ \mbox{ns} \\ \mbox{uses 10 M K}_{\rm L} \rightarrow \pi^0 \pi^0 \pi^0 \ \mbox{events from 2001-2002 data} & \mbox{PLB 626 (2005) 15} \\ \mbox{indirect measurement: } & \tau_{\rm L} = (50.72 \pm 0.11 \pm 0.35) \ \mbox{ns} \\ \mbox{uses constraint } \sum BR(K_{\rm L}) = 1 & \mbox{PLB 632 (2006) 43} \end{array}$

The error on τ_{L} is now the main limiting factor on V_{us} accuracy from K_{L} decay rates: BR/ $\tau = \Gamma(K \to \pi \ell \nu(\gamma)) = \frac{G^2 m_K^5}{768\pi^3} C_K^2 |V_{us}|^2 |f_+^{K\pi}(0)|^2 I_K^\ell S_{ew} [1 + \delta_{SU(2)} + \delta_{em}]$ τ_{L} direct measurement can be improved both in statistical and systematic accuracy using the 2004-05 data sample

 $\delta(\text{Vus f+}(0))/(\text{Vus f+}(0)) = 0.1\% \oplus 0.2\% \oplus 0.1\% \oplus 0.1\% \text{ Phases}$ BR τ_L Radiative space corrections integral

$K_L \rightarrow \pi^0 \pi^0 \pi^0 decay vertex$

Reconstruction of $K_s \rightarrow \pi^+\pi^$ determines K_L momentum within 1 MeV and 1 degree

Vertex reconstruction from the neutral clusters on the calorimeter

Neutral vertex recostruction efficiency

Photon multiplicities

Neutral vertex calibration

Use of a control sample of $K_L \rightarrow \pi^+\pi^-\pi^0$ decays allows comparison between the vertex given by the reconstructed pion tracks and the neutral vertex, which is fundamental to: 1) calibrate the time scale 2) study the neutral vertex resolution —

 $\Delta R = R_{cha} - R_{new}$

Spatial resolution ~ 2 cm

Single γ reconstruction efficiency

Use of the control sample $K_L \rightarrow \pi^+\pi^-\pi^0$ allow to measure the vertex reconstruction efficiency from the single photon

Fit result

Fit result

Systematics

	Source	Δτ/τ	Δτ
	Tag efficiency	0.34%	0.17 ns
	Preselection efficiency	0.16%	0.08 ns
	Selection efficiency	negligible	negligible
	Time scale	0.12%	0.06 ns
	Nuclear interaction	0.16%	0.08 ns
-	Total		0.21 ns
im	$\tau_{\rm L} = (50.56 \pm 0.000)$).14_{stat} ± 0.2	21 _{syst}) ns

Comparison with previous KLOE measurements:

KLOE $\tau_{\rm L} = (50.92 \pm 0.17_{\rm stat} \pm 0.13_{\rm syst\ uncorr} \pm 0.27_{\rm syst\ corr})$ ns PLB 626 (2005) $\Delta = 1.4\sigma$, taking into account the correlation between syst. errors $\sum_{i} BR_{i} = V$ **KLOE** $\tau_{\rm L} = (50.72 \pm 0.11_{\rm stat} \pm 0.35_{\rm syst})$ ns PLB 635 (2006) $\Delta = 0.4\sigma$ Preliminal $\tau_{r} = (50.56 \pm 0.14_{stat} \pm 0.21_{syst})$

For final result:

- 1) add 2004 data set $\sigma_{stat} \rightarrow 0.11$ ns
- 2) reduce systematic error on the tagging efficiency

Absolute $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ branching ratio

Tagging K+K⁻ beams

K[±] beam tagged from $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}, \ \mu^{\pm}\nu$ (85% of K[±] decays) $\approx 1.5 \times 10^{6} \text{ K}^{+}\text{K}^{-} \text{ evts/pb}^{-1}$

two-body decays identified as peaks in the momentum spectrum of secondary tracks in the kaon rest frame $\rightarrow P^*(m_{\pi})$

 $\epsilon_{tag}\cong 25\%\, \Rightarrow \cong 3.4\times 10^5 \; \mu\nu \; tags/pb^{\text{--}1}$

 \cong 1.1 \times 10⁵ $\pi\pi^0$ tags/pb⁻¹

Absolute BR($K^+ \rightarrow \pi^+ \pi^- \pi^+ (\gamma)$)

• this measurement completes the KLOE program of precise and fully inclusive K[±] dominant BR's

$K^+ \rightarrow \mu \nu$	0.6366(18)	0.3%	PLB 632(2006)
${ m K}^{\scriptscriptstyle +} ightarrow \pi^{\scriptscriptstyle +} \pi^0$	0.2065(9)	0.5%	PLB 666(2008)
${ m K^{\pm}} ightarrow \pi^0 e^{\pm} { m v}$	0.0497(5)	1.0%	JHEP 02(2008)
$\mathrm{K}^{\pm} ightarrow\pi^{0}\mu^{\pm}\mathbf{v}$	0.0324(4)	1.2 %	JHEP 02(2008)
$K^{\pm} ightarrow \pi^{\pm} \pi^{0} \pi^{0}$	0.0176(3)	1.7 %	PLB 597(2004)
τ^{\pm}	12.347(30) ns	0.24%	JHEP 01 (2008)

needed to perform a global fit to K[±] BR's

• available measurement dates back to '72 (no information on radiation cut-off) CHIANG _(2330 evts) BR(K $\rightarrow \pi^{+}\pi^{-}\pi^{+}$) = (5,56 ± 0.20)% Δ BR/BR = 3,6x10⁻²

2002 KLOE data set enough to reach

statistical relative error at few permil level

Signal selection

 \fbox 2 indipendent normalization samples given by the $\mu\nu$ and $\pi\pi^0$ tags

the track of the tagging K is backward extrapolated to the IP

 ${\color{black} \blacksquare}$ the known kinematic of $\varphi \to K^{\scriptscriptstyle t} K^{\scriptscriptstyle t}$ defines the signal K path (direction and momentum)

i we require two reconstructed tracks making a vertex along the K path *before the inner wall of the DC* (α_{geo}≈ 26%)

we count the signal decays in the missing mass spectrum

The selected sample

Signal selection efficiency

signal selection efficiency measured on MC and folded with $\frac{\varepsilon_{\text{single trk}}(\text{data})}{\varepsilon_{\text{single trk}}(\text{MC})}$

 $K \rightarrow \pi \pi^0 \pi^0$ control sample to measure $\varepsilon_{single trk}$

control sample selection

is reconstruct neutral vertex $K \rightarrow \pi^0 \pi^0 X$ decays looking for 4 γ 's with time measurements

$$p\pi^{\pm} = pK^{\pm} - p\pi^{0} - p\pi^{0}$$

$$f_{700}$$

Conclusions

KLOE will soon have a competitive result on the measurement of τ_s taking advantage of pure sample of $K_s \rightarrow \pi^+\pi^-$ and precise determination of event kinematics

KLOE has a new preliminary measurement of τ_L based on 2005 data. The final measurement will include 2004 data and will have a significantly reduced systematic error

We are finalizing the measurement of the absolute BR(K⁺ $\rightarrow \pi^+\pi^-\pi^+$); this will allow to constrain the sum of the dominant K⁺ decay modes

Tagging of $K_S K_L$ beams

K_L tagged by $K_s \rightarrow \pi^+ \pi^-$ vertex at IP $\epsilon \sim 70\%$ (mainly geometrical) K_L angular resolution: ~ 1° K_{i} momentum resolution: ~ 1 MeV K_S tagged by K_L interaction in EmC

ε ~ 30% (largely geometrical) K_s angular resolution: ~ 1° (0.3° in φ) K_s momentum resolution: ~ 1 MeV

Tagging of K⁺K⁻ beams (II)

to minimize the impact of the trigger efficiency on the signal side we restrict our normalization sample N_{tag} to 2-body decays that provide themselves the Emc trigger of the event self-triggering tags

Emc trigger given by 2 trigger sectors over threshold ~ 50 MeV

<u>tag π π ⁰</u>

- π ° clusters must satisfy the Emc trigger
- the sample N_{tag} is reduced by \cong 75%

<u>tag µ v</u>

the μ cluster fires 2 trigger sectors the sample N_{tag} is reduced by \cong 35%

resolutions: neutral VTX vs DC reconstructed quantities

 $BR(K^+ \rightarrow \pi^+ \pi^- \pi^+)$

• PDG 04 average: Δ BR/BR = 1.8% CHIANG '72: Δ BR/BR = 3.6% Σ_{f} BR(K[±] \rightarrow f) = 1 and no info on rad. cut-off

Signal selection

- 2-tracks vertex before DC inner wall and along the K path obtained from backward extrapolation of the tagging kaon track to the I.P.
- Signal peak in the missing mass spectrum (~ m_{π}^{2})

