Theoretical strategies for ε'/ε

Kaon09

June 10, 2009

Norman H. Christ

RBC and **UKQCD** Collaborations

Outline

- Introduction
- Challenges for lattice QCD
 - Operator renormalization
 - Quadratic divergences
 - $-\pi \pi$ final states
 - [2008 RBC/UKQCD results using ChPT]
 - Disconnected graphs
- Outlook
 - $\Delta I = 3/2$
 - $\Delta I = 1/2$

Introduction

Kaon09, June 10, 2009 (3)

Low Energy Effective Theory

Four quark operators

Current-current operators

 $Q_1 \equiv (\bar{s}_{\alpha} d_{\alpha})_{V-A} (\bar{u}_{\beta} u_{\beta})_{V-A}$ $Q_2 \equiv (\bar{s}_{\alpha} d_{\beta})_{V-A} (\bar{u}_{\beta} u_{\alpha})_{V-A}$

• QCD Penguins

$$Q_{3} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V-A}$$
$$Q_{4} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V-A}$$
$$Q_{5} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V+A}$$
$$Q_{6} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

• Electro-Weak Penguins $Q_{7} \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} e_{q}(\bar{q}_{\beta}q_{\beta})_{V+A}$ $Q_{8} \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} e_{q}(\bar{q}_{\beta}q_{\alpha})_{V+A}$ $Q_{9} \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} e_{q}(\bar{q}_{\beta}q_{\beta})_{V-A}$ $Q_{10} \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} e_{q}(\bar{q}_{\beta}q_{\alpha})_{V-A}$

Kaon09, June 10, 2009 (5)

Status

- The $\Delta I = \frac{1}{2}$ rule and $\frac{\varepsilon}{\varepsilon}$ are long-standing problems in particle physics.
- Accurate experimental result allows test of standard model CP violation. $re(\varepsilon'/\varepsilon) = 16.8 (1.4) \times 10^{-4}$
- Natural target for lattice QCD.
- Even 10-20% errors would be of great value.

Challenges

- Match lattice and continuum operators
- Eye diagrams contain quadratic divergences
- Difficult $\pi \pi$ final state
 - SU(3) x SU(3) ChPT fails
 - Physical decay: $p \sim 205 \text{ MeV}$
 - Euclidean, large time limit: $p \sim 0 \text{ MeV}$
- $\Delta I = 1/2$ amplitudes require disconnected graphs

Computational Challenges

Kaon09, June 10, 2009 (8)

Operator Normalization

Kaon09, June 10, 2009 (9)

Operator Renormalization

- RI/MOM scheme, gauge-fixed off-shell Green's functions.
- Earlier quenched and recent 2+1 flavor calculation demonstrate errors ~few % errors are feasible.
- Sub-percent statistical errors possible from 5-10 configurations (Dirk Broemmel, Chris Kelley, Jan Wennekers)
- Non-exceptional kinematics gives sub-percent infrared effects at $\mu = 1.7$ GeV.
- Largest uncertainty comes from $\mu = 2$ GeV QCD perturbation theory. Remove by step-scaling
 - Compare RI/MOM Green's functions or Schrodinger functional amplitudes on a sequence of ensembles with small physical volumes, $L \sim 1/2^N$
 - Match with continuum perturbation theory at $\mu = 1.7 \cdot 2^N \text{ GeV} \rightarrow \text{ error } \sim 1/N$

Operator Renormalization (con't)

- Seven $\Delta S = 1$ operators divide into three groups which mix:
 - O_(27,1)
 - O_7 and O_8
 - O_2, O_3, O_5, O_6
- Accurately handled by RI/MOM (Chris Dawson, Shu Li)
- Mixing with lower dimension operators is a small effect and easily treated.
- Effects of a single gluonic operator not yet included.

Operator Renormalization (con't)

	1	2	3	5	6	7	8
1	1.218(33)	0.0(0.0)	0.0(0.0)	0.0(0.0)	0.0(0.0)	0.0033(53)	-0.0063(33)
2	0.0(0.0)	1.062(84)	0.076(77)	0.001(33)	0.016(29)	0.0026(80)	0.0026(68)
3	0.0(0.0)	0.13(20)	1.30(27)	-0.180(89)	0.120(99)	0.044(22)	-0.037(26)
5	0.0(0.0)	-0.08(24)	-0.03(21)	1.00(12)	0.269(93)	-0.016(23)	-0.034(24)
6	0.0(0.0)	-0.64(72)	-0.31(92)	-0.67(37)	1.97(38)	0.130(93)	-0.14(10)
7	-0.00030(89)	0.006(20)	0.024(25)	-0.0012(75)	-0.0074(92)	1.084(26)	0.294(29)
8	0.0002(14)	0.052(55)	0.138(76)	0.007(29)	-0.010(21)	0.060(22)	1.711(97)

[Shu Li]

Inverse of renormalization matrix in 7 operator basis for unitary mass 0.01 and $\mu = 1.92$ GeV. Done with 75 configurations, 16³ x 32 1/*a*=1.73 GeV

Operator Renormalization (con't)

 $(\Lambda_V - \Lambda_A)/((\Lambda_V + \Lambda_A)/2)$

Exceptional momenta

Nonexceptional momenta

Y. Aoki, et al Phys.Rev.D78:054510,2008, arXiv:0712.1061 [hep-lat]

Kaon09, June 10, 2009 (13)

Quadratic Divergences

Kaon09, June 10, 2009 (14)

Quadratic Divergences

- Penguin diagrams have quadratically divergent part ~ $1/a^2$
- Easily determined and subtracted with sub percent errors.
 RBC:
 - **CP-PACS**:
- Easily controlled at the percent level!

Kaon09, June 10, 2009 (15)

Two pion final state

Kaon09, June 10, 2009 (16)

SU(3) x SU(3) Chiral Perturbation Theory

- Use "soft-pion" methods to related $K \rightarrow \pi\pi$ to $K \rightarrow \pi$ and $K \rightarrow vac$.
- Earlier 2001 quenched calculations suggested this was promising (but gave $\varepsilon'/\varepsilon = ??$).
- However, quenched ChPT highly unphysical (Golterman and Pallante).
- Quenched calculation now repeated in 2+1 flavor QCD again using chiral (domain wall) fermions.

RBC and UKQCD Collaboration First description presented by Bob Mawhinney at Kaon07

Tom Blum (Connecticut) Norman Christ (Columbia) Chris Dawson (Virginia) <u>Shu Li</u> (Columbia)

Robert Mawhinney (Columbia)

Enno Scholz (BNL)

Amarjit Soni (BNL)

2+1 Flavor partially quenched chiral perturbation theory

Christopher Aubin (W&M) Jack Laiho (St Louis) Shu Li (Columbia) Meifeng Lin (Columbia)

Kaon09, June 10, 2009 (18)

Determination of α_{27}

- Fit to points with $(m_{val+} m_{res})_{avg} \le 0.013$
- PQChPT describes this data
- Large, ~100% correction!?
- Same large ChPT corrections as RBC/UQKCD, arXiv:0804.0473
- Fit does not work without $m_K m_\pi f_K f_\pi$ division.

Relative size of LO and NLO terms

- LO and NLO log terms are the same size.
- Consistent results if we divide by $m_K m_{\pi} (f_K f_{\pi})^2$
- Double the difference between two fits to estimate systematic error.

Determination of α_6

- NLO fit not possible, insufficient data to determine 8 LEC's.
- LO fit works well for large mass range.
- Omitted NLO logs are important!

Laon09, June 10, 2009 (21)

Effect of NLO logs on α_6

- Chose $m_{max} = 0.005$.
- Use linear fit for $m_{max} \leq m$
- Use chiral log for $m \le m_{max}$
- Match value, slope and curvature at $m = m_{max}$

Results for LEC's

Q_i	$lpha_{i,\mathrm{ren}}^{(1/2)}$	$lpha_{i,\mathrm{ren}}^{(3/2)}$
1	$-6.6(15)(66) \times 10^{-5}$	$-2.48(24)(39) \times 10^{-6}$
2	$9.9(21)(99) \times 10^{-5}$	$-2.47(24)(39) \times 10^{-6}$
3	$-0.8(31)(21) \times 10^{-5}$	0.0
4	$1.62(44)(162) \times 10^{-4}$	0.0
5	$-1.52(29)(152) \times 10^{-4}$	0.0
6	$-4.1(7)(41) \times 10^{-4}$	0.0
7	$-1.11(17)(18) \times 10^{-5}$	$-5.53(85)(91) \times 10^{-6}$
8	$-4.92(72)(75) \times 10^{-5}$	$-2.46(37)(37) \times 10^{-5}$
9	$-9.8(20)(98) \times 10^{-5}$	$-3.72(37)(59) \times 10^{-6}$
10	$6.8(15)(68) \times 10^{-5}$	$-3.69(37)(59) \times 10^{-6}$

- $Q_1 Q_6, Q_9, Q_{10}$ in (GeV)⁴ Q_7, Q_8 in (GeV)⁶
- Heroic 7-operator NPR performed.

SU(3) x SU(3) ChPT Critique

- Difficult to extrapolate to chiral limit and extract needed LEC's (240 MeV $\leq m_{\pi} \leq$ 430 MeV)
- Highly unrealistic to then use those LEC's to reconstruct physical 495 MeV kaon.
- Soft-pion methods are too unreliable to be used.
- While not a positive result, this reflects a major RBC/UQKCD effort since Kaon07 and is an important conclusion.

Calculate π - π final state directly

- Lellouch-Luscher method:
 - Correct normalization for mixing of different *l* coming from cubic box.
 - Correctly include π - π interactions and Euclidean space Watson theorem.
 - Defeat Maiani-Testa theorem by tuning finite volume so that 1st or 2nd excited state has physical relative momentum.
- Further refinements:
 - G-parity boundary conditions force π π to carry physical 205 MeV momentum. (Changhoan Kim)
 - Non-zero cm mass momentum adjusted to make π - π relative momentum physical. (Takeshi Yamazaki)

Disconnected diagrams

Kaon09, June 10, 2009 (26)

Disconnected graphs

- Exponential $e^{-E_{\pi\pi}t}$ fall off produced by stochastic average rather than explicit quark propagators
- Many-source, high statistics methods needed
- Reliable signals must be extracted from small time separations:
 - Multi-state fits
 - Luscher-Wolff
- A serious challenge for LQCD
- The $\pi \pi$ system is likely the easiest!

Disconnected graphs

- Current testing:
 - 2+1 flavors
 - $-16^3 \times 32$
 - $-m_{\pi} = 430 \, {\rm MeV}$

$I = 0 \ \pi - \pi$ scattering

- π π correlator
- 32 wall sources, one for each t.
- 146 configurations
- 12 hrs/config. at 1/8 Tflops.

Outlook

Kaon09, June 10, 2009 (29)

Direct calculation of $K \rightarrow \pi \pi$ a major **RBC/UKQCD** project

• Collaborators:

RBCTom BlumNorman ChristTaku IzubuchiChanghoan KimMatthew LightmanQi LiuBob MawhinneyAmarjit Soni

<u>UQKCD</u>

Dirk Broemmel Jonathan Flynn

Elaine Goode Chris Sachrajda

• Ready to start USQCD 80 M core-hour BG/P Argonne Incite allocation:

-4.5 fm box, 1/a = 1.4 GeV, AuxDet action

 $-m_{\pi} = 240 \text{ and } 180 \text{ MeV}$

Outlook $\Delta I = 3/2$

(Matthew Lightman)

- Quenched 24³ x 64, 1/a=1.3 GeV, $m_{\pi} = 228$ MeV tests underway.
- Anti-periodic *d* quark.
 - p = 0, 170, 240, 295 MeV.
 - $p_{\text{phys}} = 205 \text{ MeV}$
 - Only needed for valence *d*'s
- Use AuxDet large volume lattices
 - $m_{\rm res} = 0.0018/a \sim 3 {\rm MeV}$
 - 1/a = 1.4 GeV
 - L = 4.5 fm
 - $m_{\pi} = 180 \text{ and } 240 \text{ MeV}$
- Computing re A_2 and im A_2
 - ~15% accuracy
 - Practical 2-year goal

 $A_2 = 2.17(12) \ 10^{-8} \,\text{GeV}, \ p = 0$

Outlook: $\Delta I = \frac{1}{2}$ (Qi Liu)

Outlook: $\Delta I = \frac{1}{2}$ (Qi Liu) $\pi - \pi$ effective mass

- Disconnected graphs introduce large errors into $\pi - \pi$ scattering for t ≥ 5
- Non-zero momentum:
 - Non-zero cm momentum
 - G-parity boundary conditions
- Complete $K \rightarrow \pi \pi$ code written and first $8^3 \times 12$ calculations underway.
- $16^3 \times 32 \rightarrow 32^3 \times 64$ requires:
 - Improved short-time resolution
 - More efficient inversions

Conclusion

- Calculation of re A₂ and im A₂ to ~15% a realistic 1 2 year goal
- re A_0 and im A_0 more difficult
 - Theoretical issues are resolved.
 - Disconnected diagrams easiest in this $\pi \pi$ case.
 - Next generation of computer hardware likely needed for definitive results: Next generation IBM BG/? machine should be sufficient!
- Expect 20% result for $\Delta I = \frac{1}{2}$ rule and $\frac{\varepsilon}{\varepsilon}$ in ~3 years!