Measurement of FCNC decays $K^{\pm} \rightarrow \pi^{\pm} I^{+} I^{-}$ by NA48/2 at CERN

Evgueni Goudzovski (University of Birmingham)

on behalf of the NA48/2 collaboration

(Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Florence, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Turin, Vienna)

<u>Outline:</u>

- 1) Beams, detector and data taking in 2003/04;
- 2) $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$ analysis: NA48/2 final results;
- 3) $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ analysis: analysis status and prospects;
- 4) Summary.

Kaon 2009 conference Tsukuba, Japan • June 9, 2008

E. Goudzovski / Kaon09, 9 June 2009

The NA48 detector

Main detector components:

 Magnetic spectrometer (4 DCHs): 4 views/DCH: redundancy ⇒efficiency; used in trigger logic; Δp/p = 1.0% + 0.044%*p [GeV/c].

- Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogenious; $\sigma_E/E = 3.2\%/E^{1/2} + 9\%/E + 0.42\%$ [GeV]; $\sigma_x = \sigma_y = 0.42/E^{1/2} + 0.6mm$ (1.5mm@10GeV). Used for γ detection and <u>particle ID</u>.
- Hadron calorimeter, muon veto counters, photon vetoes.

NA48/2 data taking: completed

A view of the NA48/2 beam line

2003 run: ~ 50 days 2004 run: ~ 60 days

K_{3π} statistics in 2 years: $K^{\pm} \rightarrow \pi^{-}\pi^{+}\pi^{\pm}$: ~4·10⁹ $K^{\pm} \rightarrow \pi^{0}\pi^{0}\pi^{\pm}$: ~1·10⁸

> Rare K^{\pm} decays: BRs down to 10^{-9} can be measured

>200 TB of data recorded

$K_{\pi II}$: motivation & theory

 $K^{\pm} \rightarrow \pi^{\pm}\gamma^* \rightarrow \pi^{\pm}I^+I^-$: suppressed FCNC process proceeding through single virtual photon exchange. Information on weak interactions at low energy.

 $d\Gamma_{\pi ee}/dz \sim P(z) |W(z)|^2 = (M_{ee}/M_K)^2$, P(z) is a phase space factor

Considered models for the form factor:

- (1) polynomial: $W(z) = G_F M_K^2 \cdot f_0 \cdot (1+\delta z)$
- (2) ChPT O(p⁶): $W(z) = G_F M_K^2 \cdot (a_+ + b_+ z) + W^{\pi\pi}(z)$ G. D'Ambrosio et al., JHEP 9808 (1998) 4
- (3) ChPT, large-N_c QCD: W(z) = W(w, β, z) S. Friot, D. Greynat, E. de Rafael, PLB 595 (2004) 301

(4) "Mesonic" ChPT: W(z) = W(M_a, M_p, z) A.Z. Dubnickova et al., Phys. Part. Nucl. Lett. 5 (2008) 76 [hep-ph/0611175]

Goals: 1) dΓ/dz and model-independent BR in kinematic range z>0.08;
2) parameters of the models + BRs in the full kinematic range;
3) upper limit for CPV charge asymmetry of decay rates.

E. Goudzovski / Kaon09, 9 June 2009

Principal selection criteria

The $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$ is measured normalizing to $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}{}_{D} \rightarrow \pi^{\pm} e^{+} e^{-} \gamma$. Thus particle ID efficiencies cancel in the first order.

Common selection criteria:

3-track vertex [consistent in space/time], one π candidate, two opposite sign electron candidates. Electron (pion) ID based on E deposition : E/p>0.95 (E/p<0.85).

Signal selection:

Kinematic suppression of $\pi^{\pm}\pi^{0}_{D}$ background: M_{ee}>140MeV/c². Limitations on reconstructed $\pi^{\pm}e^{+}e^{-}$ invariant mass, total & transverse momentum Normalization selection: Selection of good γ candidate. Limitations on reconstructed $e^+e^-\gamma$ and $\pi^\pm e^+e^-\gamma$ masses, total & transverse momentum.

The accessible M_{ee} region

All analysis cuts except the M_{ee} cut are applied

- The region $M_{ee} < 140 MeV/c^2$ is dominated by background and not accessible;
- Subtraction of the $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{DD}$ reveals the $\pi^{0} \rightarrow e^{+}e^{-}$ signal (~500 events).

Fit results (1)

E. Goudzovski / Kaon09, 9 June 2009

Fit results (2)

Fit results (4)

4

$BR_{mi} \times 10^7 =$	2.28 ±	$0.03_{stat} \pm 0.04_{syst} \pm$	$0.06_{ext} =$	$\textbf{2.28}~\pm~\textbf{0.08}$			
$f_0 =$	0.531 ±	$0.012_{stat} \pm 0.008_{syst} \pm$	$0.007_{ext} =$	0.531 ± 0.016			
δ =	2.32 ±	$0.15_{stat} \pm 0.09_{syst}$	=	$\textbf{2.32}~\pm~\textbf{0.18}$			
$BR_1 \times 10^7 =$	3.05 ±	$0.04_{stat} \pm 0.05_{syst} \pm$	$0.08_{ext} =$	$\textbf{3.05}~\pm~\textbf{0.10}$			
a ₊ =	-0.578 ±	$0.012_{stat} \pm 0.008_{syst} \pm$	$0.007_{ext} =$	-0.578 ± 0.016			
b ₊ =	-0.779 ±	$0.053_{stat} \pm 0.036_{syst} \pm$	$0.017_{ext} =$	-0.779 ± 0.066			
$BR_2 \times 10^7 =$	3.14 ±	$0.04_{stat} \pm 0.05_{syst} \pm$	$0.08_{ext} =$	$\textbf{3.14}~\pm~\textbf{0.10}$			
= w	0.057 ±	$0.005_{stat} \pm 0.004_{syst} \pm$	$0.001_{ext} =$	0.057 ± 0.007			
β =	3.45 ±	$0.24_{stat} \pm 0.17_{syst} \pm$	$0.05_{ext} =$	$\textbf{3.45}~\pm~\textbf{0.30}$			
$BR_{3} \times 10^{7} =$	$3.13 \pm$	$0.04_{stat} \pm 0.05_{syst} \pm$	$0.08_{ext} =$	$\textbf{3.13}~\pm~\textbf{0.10}$			
M_a =	0.974 ±	$0.030_{stat} \pm 0.019_{syst} \pm$	$0.002_{ext} =$	0.974 ± 0.035	[GeV/c]		
$M_{o} =$	$\textbf{0.716}~\pm$	$0.011_{stat} \pm 0.007_{syst} \pm$	$0.002_{ext} =$	0.716 ± 0.014	[GeV/c]		
$BR_4 \times 10^{7} =$	$\textbf{3.18}~\pm$	$0.04_{stat} \pm 0.05_{syst} \pm$	$0.08_{ext} =$	$\textbf{3.18}~\pm~\textbf{0.10}$			
Including uncertainty due to the model dependence,							

 $BR = (3.11 \pm 0.04_{stat} \pm 0.05_{syst} \pm 0.08_{ext} \pm 0.07_{model}) \times 10^{-7} = (3.11 \pm 0.12) \times 10^{-7}$

CPV parameter (first measurement; only uncorrelated K⁺/K⁻ uncertainties):

$$\Delta(K_{\pi ee}^{\pm}) = (BR^{+}-BR^{-}) / (BR^{+}+BR^{-}) = (-2.1\pm1.5_{stat}\pm0.6_{syst}) \times 10^{-2}$$

E. Goudzovski / Kaon09, 9 June 2009

Comparison: FF slope δ

Measurement	Process	Result
Alliegro et al., PRL 68 (1992) 278	$K^+ \rightarrow \pi^+ e^+ e^-$	1.31±0.48
Appel et al. [E865], PRL 83 (1999) 4482	$K^+ \rightarrow \pi^+ e^+ e^-$	2.14±0.20
Ma et al. [E865], PRL 84 (2000) 2580	$K^+ \rightarrow \pi^+ \mu^+ \mu^-$	2.45 ^{+1.30} _{-0.95}
NA48/2, arXiv:0903:3130 (2009)	$K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$	2.32±0.18

 \rightarrow NA48/2 measurement of δ is compatible with the earlier results, has good precision;

 \rightarrow A contradiction of the data to the meson dominance models observed earlier is further confirmed;

→ NA48/2 values of (f_0,a_+,b_+,w,β) are in agreement with BNL E865 ones.

Comparison: BR in full z range

Measurement	Sample	BR×10 ⁷
Bloch et al., PL 56 (1975) B201	41 (K+)	2.70±0.50
Alliegro et al., PRL 68 (1992) 278	500 (K+)	2.75±0.26
Appel et al. [E865], PRL 83 (1999) 4482	10,300 (K+)	2.94±0.15
NA48/2, arXiv:0903:3130 (2009)	7,300 (K [±])	3.11±0.12

<u>Comparison of E865 vs NA48/2 results</u> taking into account correlated uncertainties (normalization and model dependence): 1.6 difference.

The NA48/2 results are final and published: CERN-PH-EP-2009-005, arXiv:0903:3130, accepted by Physics Letters B.

NA48/2: N=3,100 K[±] $\rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ candidates with 3% background. Background well described by both K_{3 π} MC and same-sign muon samples. *Cf.* total world sample is ~700 events.

 $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ analysis (2)

Analysis is well advanced, we aim to present the preliminary results in 2009.

Summary

- Precise study of the $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$ decay (BR~3×10⁻⁷):
 - \rightarrow sample & precision comparable to world's best ones;
 - \rightarrow (BR, FF) agree to theory and earlier measurements;
 - \rightarrow first limit on the CPV charge asymmetry obtained;
 - \rightarrow final results published recently.
- Precise study of the $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ decay (BR~0.8×10⁻⁷):
 - \rightarrow NA48/2 sample ~4 times larger than total world sample;
 - \rightarrow background is low and under control;
 - \rightarrow aim at preliminary results in 2009 stay tuned!