### Quantum coherence and CPT symmetry tests in the neutral kaon system at KLOE



Antonio Di Domenico Dipartimento di Fisica, Università di Roma "La Sapienza" and INFN sezione di Roma, Italy on behalf of KLOE collaboration





2009 Kaon International Conference, June 9<sup>th</sup> – 12<sup>th</sup>, 2009, Tsukuba, Japan

# **CPT: introduction**

The three discrete symmetries of QM, C (charge conjugation), P (parity), and T (time reversal) are known to be violated in nature both singly and in pairs. Only CPT appears to be an exact symmetry of nature.

CPT theorem (Luders, Jost, Pauli, Bell 1955 -1957): Exact CPT invariance holds for any quantum field theory (flat space-time) which assumes:

(1) Lorentz invariance (2) Locality (3) Unitarity (i.e. conservation of probability).

Testing the validity of the CPT symmetry probes the most fundamental assumptions of our present understanding of particles and their interactions.

Extension of CPT theorem to a theory of quantum gravity far from obvious (e.g. CPT violation appears together with decoherence in some models with space-time foam backgrounds).

No predictive theory incorporating CPT violation => only phenomenological models to be constrained by experiments.

The neutral kaon system offers unique possibilities to test CPT invariance e.g. :

$$|m_{K^0} - m_{\overline{K}^0}|/m_K < 10^{-18}, |m_{B^0} - m_{\overline{B}^0}|/m_B < 10^{-14}, |m_p - m_{\overline{p}}|/m_p < 10^{-9}$$

# 1) "Standard" tests of CPT symmetry in the neutral kaon system

#### **CPT test: the Bell-Steinberger relation**

$$\begin{aligned} \left| K_{S,L} \right\rangle &= \frac{1}{\sqrt{2\left(1 + \left| \varepsilon_{S,L} \right|\right)}} \left[ \left(1 + \varepsilon_{S,L} \right) \left| K^{0} \right\rangle \pm \left(1 - \varepsilon_{S,L} \right) \left| \overline{K}^{0} \right\rangle \right] \\ \\ &\text{CPT violation} \\ &\text{in the mixing:} \\ \varepsilon_{S,L} &= \varepsilon \pm \delta \end{aligned} \qquad \begin{aligned} \delta &= \frac{1}{2} \frac{\left(m_{\overline{K}^{0}} - m_{K^{0}}\right) - \left(i/2\right) \left(\Gamma_{\overline{K}^{0}} - \Gamma_{K^{0}}\right)}{\Delta m + i\Delta\Gamma/2} \qquad \begin{aligned} \Delta m &= m_{L} - m_{S} \\ \Delta \Gamma &= \Gamma_{S} - \Gamma_{L} \\ \phi_{SW} &= \arctan\left(2\Delta m/\Delta\Gamma\right) \end{aligned}$$

Unitarity constraint: 
$$|K\rangle = a_S |K_S\rangle + a_L |K_L\rangle$$
  
 $\left(-\frac{d}{dt} ||K(t)\rangle||^2\right)_{t=0} = \sum_f |a_S\langle f|T|K_S\rangle + a_L\langle f|T|K_L\rangle|^2$ 

**Bell-Steinberger relation:** 



### **Experimental inputs to the Bell-Steinberger relation**

|                                                                |                                                |                      | _                                     |
|----------------------------------------------------------------|------------------------------------------------|----------------------|---------------------------------------|
|                                                                | Value                                          | Source               |                                       |
| $	au_{K_S}$                                                    | $0.08958 \pm 0.00005~{\rm ns}$                 | PDG [14]             |                                       |
| $	au_{K_L}$                                                    | $50.84 \pm 0.23 \text{ ns}$                    | KLOE average         |                                       |
| $m_L - m_S$                                                    | $(5.290 \pm 0.016) \times 10^9 \text{ s}^{-1}$ | PDG [14]             |                                       |
| $BR(K_S \rightarrow \pi^+ \pi^-)$                              | $0.69186 \pm 0.00051$                          | KLOE average         |                                       |
| $BR(K_S \rightarrow \pi^0 \pi^0)$                              | $0.30687 \pm 0.00051$                          | KLOE average         |                                       |
| $BR(K_S \to \pi \ell \nu)$                                     | $(11.77 \pm 0.15) \times 10^{-4}$              | KLOE [6]             |                                       |
| $BR(K_L \rightarrow \pi^+ \pi^-)$                              | $(1.933 \pm 0.021) \times 10^{-3}$             | KLOE average         |                                       |
| $BR(K_L \rightarrow \pi^0 \pi^0)$                              | $(0.848 \pm 0.010) \times 10^{-3}$             | KLOE average         |                                       |
| $\phi_{+-}$                                                    | $(43.4 \pm 0.7)^{\circ}$                       | PDG [14]             |                                       |
| $\phi_{00}$                                                    | $(43.7 \pm 0.8)^{\circ}$                       | PDG [14]             |                                       |
| $R_{S,\gamma} (E_{\gamma} > 20 \text{MeV})$                    | $(0.710 \pm 0.016) \times 10^{-2}$             | E731 [18]            | Main improvements done with           |
| $R_{S,\gamma}^{\text{th-IB}}$ ( $E_{\gamma} > 20 \text{MeV}$ ) | $(0.700 \pm 0.001) \times 10^{-2}$             | KLOE MC [19]         | KLOE moosurements on K                |
| $ \eta_{+-\gamma} $                                            | $(2.359 \pm 0.074) \times 10^{-3}$             | E773 [17]            | RLOL measurements on R <sub>S</sub>   |
| $\phi_{+-\gamma}$                                              | $(43.8 \pm 4.0)^{\circ}$                       | E773 [17]            | semileptonic and $3\pi^0$ decays      |
| $BR(K_L \rightarrow \pi^+ \pi^- \pi^0)$                        | $0.1262 \pm 0.0011$                            | KLOE average         |                                       |
| $\eta_{+-0}$                                                   | $((-2\pm7)+i(-2\pm9))\times10^{-3}$            | CPLEAR [10]          |                                       |
| $BR(K_L \rightarrow 3\pi^0)$                                   | $0.1996 \pm 0.0021$                            | KLOE average         |                                       |
| $BR(K_S \rightarrow 3\pi^0)$                                   | $< 1.5 \times 10^{-7}$ at 95% CL               | KLOE [5]             |                                       |
| $\phi_{000}$                                                   | uniform from 0 to $2\pi$                       |                      |                                       |
| $BR(K_L \to \pi \ell \nu)$                                     | $0.6709 \pm 0.0017$                            | KLOE average         |                                       |
| $A_L + A_S$                                                    | $(0.5 \pm 1.0) \times 10^{-2}$                 | $K_{\ell 3}$ average | · · · · · · · · · · · · · · · · · · · |
| $\operatorname{Im}(x_+)$                                       | $(0.8 \pm 0.7) \times 10^{-2}$                 | $K_{\ell 3}$ average |                                       |

#### **CPT test: the Bell-Steinberger relation**



CPLEAR: study of the time evolution of neutral kaons in semileptonic decays

 $\Re \delta = (0.30 \pm 0.33 \pm 0.06) \times 10^{-3}$ 

PLB444 (1998) 52

Combining Re $\delta$  and Im $\delta$  results:

$$\delta = \frac{1}{2} \frac{\left(m_{\overline{K}^{0}} - m_{K^{0}}\right) - (i/2)\left(\Gamma_{\overline{K}^{0}} - \Gamma_{K^{0}}\right)}{\Delta m + i\Delta\Gamma/2} \qquad (\Gamma_{\overline{K}^{0}} - \Gamma_{K^{0}})\overline{(10^{-18}\,\text{GeV})} \xrightarrow{95\%\,\text{CL}}_{68\%\,\text{CL}}$$
Assuming  $\left(\Gamma_{\overline{K}^{0}} - \Gamma_{K^{0}}\right) = 0$ , i.e. no CPT viol. in decay:  

$$-5.3 \times 10^{-19} < m_{\overline{K}^{0}} - m_{K^{0}} < 6.3 \times 10^{-19} \text{ GeV}$$
at 95% c.l.

### **CPT test: the Bell-Steinberger relation**

M. Palutan, presented at FLAVIANET Kaon ws 08 (prelim.):

Re  $\varepsilon = (161.2 \pm 0.6) \times 10^{-5}$ Im  $\delta = (-0.1 \pm 1.4) \times 10^{-5}$ 

( using latest KTeV results on  $\phi_{\pi\pi}$  )

CPLEAR: study of the time evolution of neutral kaons in semileptonic decays

$$\Re \delta = (0.30 \pm 0.33 \pm 0.06) \times 10^{-3}$$

PLB444 (1998) 52

Combining Re $\delta$  and Im $\delta$  results:

$$\delta = \frac{1}{2} \frac{\left(m_{\overline{K}^{0}} - m_{K^{0}}\right) - (i/2)\left(\Gamma_{\overline{K}^{0}} - \Gamma_{K^{0}}\right)}{\Delta m + i\Delta\Gamma/2} \qquad (\Gamma_{\overline{K}^{0}} - \Gamma_{K^{0}})^{(10^{-18} \text{ GeV})} = 95\% \text{ CL}}{68\% \text{ CL}}$$
Assuming  $\left(\Gamma_{\overline{K}^{0}} - \Gamma_{K^{0}}\right) = 0$ , i.e. no CPT viol. in decay:  

$$\left|m_{\overline{K}^{0}} - m_{K^{0}}\right| < 4.0 \times 10^{-19} \text{ GeV at 95\% C.L.}$$

# 2) Search for decoherence and CPT violation in the neutral kaon system

#### **The KLOE detector at the Frascati φ-factory DAΦNE**



#### Integrated luminosity (KLOE)





Lead/scintillating fiber calorimeter drift chamber 4 m diameter × 3.3 m length helium based gas mixture

 $\rightarrow$  ~2.5×10<sup>9</sup> K<sub>S</sub>K<sub>L</sub> pairs

# Neutral kaons at a $\phi$ -factory

Production of the vector meson  $\phi$  in e<sup>+</sup>e<sup>-</sup> annihilations:

- $e^+e^- \rightarrow \phi \quad \sigma_{\phi} \sim 3 \ \mu b$ W =  $m_{\phi} = 1019.4 \ MeV$
- BR( $\phi \rightarrow K^0 \overline{K}^0$ ) ~ 34%

• ~10<sup>6</sup> neutral kaon pairs per pb<sup>-1</sup> produced in an antisymmetric quantum state with  $J^{PC} = 1^{--}$ :

 $p_{\rm K} = 110 \text{ MeV/c}$  $\lambda_{\rm S} = 6 \text{ mm} \quad \lambda_{\rm L} = 3.5 \text{ m}$ 



The detection of a kaon at large (small) times tags a  $K_S(K_L)$   $\Rightarrow$  possibility to select a pure  $K_S$  beam (**unique** at a  $\phi$ -factory, not possible at fixed target experiments)

Neutral kaon interferometry  

$$|i\rangle = \frac{N}{\sqrt{2}} [|K_{s}(\vec{p})\rangle| K_{L}(-\vec{p})\rangle - |K_{L}(\vec{p})\rangle| K_{s}(-\vec{p})\rangle]$$
Double differential time distribution:  

$$I(f_{1}, t_{1}; f_{2}, t_{2}) = C_{12} \left\{ |\eta_{1}|^{2} e^{-\Gamma_{L}t_{1} - \Gamma_{S}t_{2}} + |\eta_{2}|^{2} e^{-\Gamma_{S}t_{1} - \Gamma_{L}t_{2}} - 2|\eta_{1}||\eta_{2}|e^{-(\Gamma_{S} + \Gamma_{L})(t_{1} + t_{2})/2} \cos[\Delta m(t_{2} - t_{1}) + \phi_{1} - \phi_{2}] \right\}$$
where  $t_{I}(t_{2})$  is the proper time of one (the other) kaon decay into  $f_{I}(f_{2})$  final state and:

$$\eta_{i} = \left| \eta_{i} \right| e^{i\phi_{i}} = \left\langle f_{i} \left| T \right| K_{L} \right\rangle / \left\langle f_{i} \left| T \right| K_{S} \right\rangle$$
$$C_{12} = \frac{\left| N \right|^{2}}{2} \left| \left\langle f_{1} \left| T \right| K_{S} \right\rangle \left\langle f_{2} \left| T \right| K_{S} \right\rangle \right|^{2}$$

characteristic interference term at a φ-factory => interferometry

From these distributions for various final states  $f_i$  one can measure the following quantities:  $\Gamma_S$ ,  $\Gamma_L$ ,  $\Delta m$ ,  $|\eta_i|$ ,  $\phi_i \equiv \arg(\eta_i)$ 

#### **Neutral kaon interferometry: main observables**









$$\left|i\right\rangle = \frac{1}{\sqrt{2}} \left[\left|K^{0}\right\rangle\right| \overline{K}^{0} \left\rangle - \left|\overline{K}^{0}\right\rangle\right| K^{0} \right\rangle\right]$$

$$\begin{split} I\left(\pi^{+}\pi^{-},\pi^{+}\pi^{-};\Delta t\right) &= \frac{N}{2} \bigg[ \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| K^{0}\overline{K}^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} \\ &- 2\Re \bigg( \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| K^{0}\overline{K}^{0}(\Delta t) \bigg\rangle \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \bigg\rangle^{*} \bigg) \bigg] \end{split}$$

Feynman described the phenomenon of interference as containing "the only mistery" of quantum mechanics

$$\left|i\right\rangle = \frac{1}{\sqrt{2}} \left[\left|K^{0}\right\rangle\right| \overline{K}^{0} \left\rangle - \left|\overline{K}^{0}\right\rangle\right| K^{0} \right\rangle\right]$$

$$I\left(\pi^{+}\pi^{-},\pi^{+}\pi^{-};\Delta t\right) = \frac{N}{2} \left[ \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| K^{0}\overline{K}^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} - \left(1 - \zeta_{00}\right) \cdot 2\Re \left( \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| K^{0}\overline{K}^{0}(\Delta t) \right\rangle \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle^{*} \right) \right]$$

Feynman described the phenomenon of interference as containing "the only mistery" of quantum mechanics

$$\left|i\right\rangle = \frac{1}{\sqrt{2}} \left[\left|K^{0}\right\rangle\right| \overline{K}^{0} \left\rangle - \left|\overline{K}^{0}\right\rangle\right| K^{0} \right\rangle\right]$$

$$I\left(\pi^{+}\pi^{-},\pi^{+}\pi^{-};\Delta t\right) = \frac{N}{2} \left[ \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| K^{0}\overline{K}^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{-} \right|^{2} + \left| \left\langle \pi^{+$$

Feynman described the phenomenon of interference as containing "the only mistery" of quantum mechanics Decoherence parameter:

$$\zeta_{0\overline{0}} = 0 \quad \rightarrow \quad \mathrm{QM}$$

 $\zeta_{0\overline{0}} = 1 \rightarrow \text{total decoherence}$ (also known as Furry's hypothesis or spontaneous factorization) [W.Furry, PR 49 (1936) 393]

- Analysed data: L=1.5 fb<sup>-1</sup> (2004-05 data)
- Fit including  $\Delta t$  resolution and efficiency effects + regeneration
- $\Gamma_S$ ,  $\Gamma_L$ ,  $\Delta m$  fixed from PDG

# KLOE FINAL:

$$\zeta_{0\overline{0}} = (1.4 \pm 9.5_{\text{STAT}} \pm 3.8_{\text{SYST}}) \times 10^{-7}$$

as CP viol.  $O(|\eta_{+-}|^2) \sim 10^{-6}$ => high sensitivity to  $\zeta_{0\overline{0}}$ 

- Improvement x 2 wrt published KLOE measurement (PLB 642(2006) 315)

- From CPLEAR data  $(p\overline{p})_{REST} \rightarrow K^0 \overline{K}^0$ Bertlmann et al. obtain (PR D60 (1999) 114032 ):

 $\zeta_{0\overline{0}} = 0.4 \pm 0.7$ 



- Comparison with quantum optics tests: precision  $O(10^{-3})$ 

# **Decoherence and CPT violation**

Modified Liouville – von Neumann equation for the density matrix of the kaon system:

$$\dot{\rho}(t) = -iH\rho + i\rho H^{+} + L(\rho) + extra term inducing decoherence: pure state => mixed state$$

# **Decoherence and CPT violation**

Modified Liouville – von Neumann equation for the density matrix of the kaon system:

$$\dot{\rho}(t) = -iH\rho + i\rho H^{+} + (L(\rho)) \quad \text{extra term inducing} \\ \frac{\partial \rho}{\partial M} \quad \text{decoherence:} \\ \text{pure state => mixed state} \quad \text{decoherence:} \\ \text{decoherence:} \quad \text{decoherence:} \\ \text{decoherence:} \quad \text{decoherence:} \\ \text{decoherence:} \quad \text{decoherence:} \quad \text{decoherence:} \\ \text{decoherence:} \quad \text{decoherence:} \quad \text{decoherence:} \\ \text{decoherence:} \quad \text{decoherence$$

Possible decoherence due quantum gravity effects:

**Black hole information loss paradox** => Possible decoherence near a black hole. Hawking [1] suggested that at a microscopic level, in a quantum gravity picture, nontrivial space-time fluctuations (generically <u>space-time foam</u>) could give rise to decoherence effects, which would necessarily entail a violation of CPT [2]. J. Ellis et al.[3-6] => model of decoherence for neutral kaons => 3 new CPTV param.  $\alpha, \beta, \gamma$ :

$$L(\rho) = L(\rho; \alpha, \beta, \gamma)$$
  
 $\alpha, \gamma > 0$ ,  $\alpha\gamma > \beta^2$   
At most:  $\alpha, \beta, \gamma = O\left(\frac{M_K^2}{M_{PLANCK}}\right) \approx 2 \times 10^{-20} \text{ GeV}$ 

[1] Hawking, Comm.Math.Phys.87 (1982) 395; [2] Wald, PR D21 (1980) 2742; [3] Ellis et. al, NP B241 (1984) 381;
PRD53 (1996)3846 [4] Huet, Peskin, NP B434 (1995) 3; [5] Benatti, Floreanini, NPB511 (1998) 550 [6]
Bernabeu, Ellis, Mavromatos, Nanopoulos, Papavassiliou: Handbook on kaon interferometry [hep-ph/0607322]

A. Di Domenico

# $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ : decoherence & CPTV by QG

Study of time evolution of **single kaons** decaying in  $\pi$ + $\pi$ - and semileptonic final state

CPLEAR **PLB 364, 239 (1999)** 

$$\alpha = (-0.5 \pm 2.8) \times 10^{-17} \text{ GeV}$$
  
 $\beta = (2.5 \pm 2.3) \times 10^{-19} \text{ GeV}$   
 $\gamma = (1.1 \pm 2.5) \times 10^{-21} \text{ GeV}$ 

In the complete positivity hypothesis  $\alpha = \gamma$  ,  $\beta = 0$ => only one independent parameter:  $\gamma$ 

The fit with  $I(\pi^+\pi^-,\pi^+\pi^-;\Delta t,\gamma)$  gives: **KLOE FINAL** L=1.5 fb<sup>-1</sup>

$$\gamma = (0.7 \pm 1.2_{STAT} \pm 0.3_{SYST}) \times 10^{-21} \text{ GeV}$$

- Improvement x 2 wrt published KLOE

Complete positivity guarantees the positivity of the eigenvalues of density matrices describing states of correlated kaons.



# $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ : CPT violation in correlated K states

In presence of decoherence and CPT violation induced by quantum gravity (CPT operator "ill-defined") the definition of the particle-antiparticle states could be modified. This in turn could induce a breakdown of the correlations imposed by Bose statistics (EPR correlations) to the kaon state [Bernabeu, et al. PRL 92 (2004) 131601, NPB744 (2006) 180]:

$$|i\rangle \propto \left(K^{0}\overline{K^{0}} - K^{0}\overline{K^{0}}\right) + \bigotimes K^{0}\overline{K^{0}} + K^{0}\overline{K^{0}}\right)$$
  

$$|\omega| \text{ could be at most:} \qquad |\omega|^{2} = O\left(\frac{E^{2}/M_{PLANCK}}{\Delta\Gamma}\right) \approx 10^{-5} \Rightarrow |\omega| \sim 10^{-3}$$
  
Fit of  $I(\pi^{+}\pi^{-},\pi^{+}\pi^{-};\Delta t,\omega)$ :  
**KLOE FINAL :**  

$$\begin{split} & = 1.5 \text{ fb}^{-1} \\ \Im \omega = \left(-1.6^{+3.0}_{-2.1STAT} \pm 0.4_{SYST}\right) \times 10^{-4} \\ \Im \omega = \left(-1.7^{+3.3}_{-3.0STAT} \pm 1.2_{SYST}\right) \times 10^{-4} \\ |\omega| < 1.0 \times 10^{-3} \quad \text{at } 95\% \text{ C.L.} \end{split}$$
  

$$\begin{aligned} -\text{Improvement } x 2 \\ \text{wrt published KLOE} \\ -\text{In the B system [Alvarez, Bernabeu, Nebot JHEP 0611, 087]} \\ -0.0084 \leq \Re \omega \leq 0.0100 \quad \text{at } 95\% \text{ C.L.} \end{aligned}$$

#### 3) Tests of Lorentz invariance and CPT symmetry in the neutral kaon system

# **CPT and Lorentz invariance violation (SME)**

Kostelecky et al. developed a phenomenological effective model providing a framework for CPT and Lorentz violations, based on spontaneous breaking of CPT and Lorentz symmetry, which might happen in quantum gravity (e.g. in some models of string theory) **Standard Model Extension (SME)** 

[Kostelecky PRD61 (1999) 016002, PRD 64 (2001) 076001]

**CPT violation in neutral kaons according to SME**: only in mixing, not in decay.

•  $\delta$  cannot be a constant (momentum dependence)

$$\delta = i \sin \phi_{SW} e^{i\phi_{SW}} \gamma_K \left( \Delta a_0 - \vec{\beta}_K \cdot \Delta \vec{a} \right) / \Delta m$$

where  $\Delta a_{\mu}$  are four parameters associated to SME lagrangian terms and related to CPT and Lorentz violation.

 $\delta$  depends on sidereal time t since laboratory frame rotates with Earth:

$$\overline{\delta}(|\vec{p}|,\theta,t) = \frac{i\sin\phi_{SW}e^{i\phi_{SW}}}{\Delta m}\gamma_{K}[\Delta a_{0} + \beta_{K}\Delta a_{Z}\cos\chi\cos\theta]$$

 $+\beta_{K}\Delta a_{Y}\sin\chi\cos\theta\sin\Omega t+\beta_{K}\Delta a_{X}\sin\chi\cos\theta\cos\Omega t]$ 

Ω: Earth's sidereal freq.
χ: angle bet. the z lab. axis and the Earth's rotat. axis
θ: kaon polar angle in the lab.



### **Measurement of** $\Delta a_{\mu}$ **at KLOE**



### **Measurement of** $\Delta a_{\mu}$ **at KLOE**



A. Di Domenico

#### 4) Future plans

# **KLOE-2** at upgraded DAΦNE

# Upgrade of DA $\Phi$ NE in luminosity:

Crabbed waist scheme at DA $\Phi$ NE (proposal by P. Raimondi)

- increase L by a factor O(5)
- requires minor modifications
- relatively low cost

- KLOE-2 Plan:
   phase 0: KLOE restart taking data end 2009 with a minimal upgrade (L~5 fb<sup>-1</sup>)
   phase 1: full KLOE upgrade (KLOE-2) > 2011 (L>20 fb<sup>-1</sup>)

#### **Physics issues:**

- Neutral kaon interferometry, CPT symmetry & QM tests
- Kaon physics, CKM, LFV, rare K<sub>S</sub> decays
- η,η' physics
- Light scalars,  $\gamma\gamma$  physics
- Hadron cross section at low energy, muon anomaly

Detector upgrade issues:

- <u>Successful</u> experimental test at DAΦNE

- Inner tracker R&D
- γγ tagging system
- Calorimeter, increase of granularity

see Branchini's talk

- FEE maintenance and upgrade
- Computing and networking update
- etc.. (Trigger, software, ...)

#### **Interferometry at KLOE-2:** $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$



### **Perspectives with KLOE-2 at upgraded DAΦNE**

| Mode                              | Test of | Param.                                        | Present best published                                   | KLOE-2                                |
|-----------------------------------|---------|-----------------------------------------------|----------------------------------------------------------|---------------------------------------|
|                                   |         |                                               | measurement                                              | L=50 fb <sup>-1</sup>                 |
| $K_S \rightarrow \pi e \nu$       | CP, CPT | A <sub>S</sub>                                | $(1.5 \pm 11) \times 10^{-3}$                            | $\pm$ 1 × 10 <sup>-3</sup>            |
| $\pi^+\pi^ \pi ev$                | CP, CPT | A <sub>L</sub>                                | $(3322 \pm 58 \pm 47) \times 10^{-6}$                    | $\pm$ 25 $	imes$ 10 <sup>-6</sup>     |
| $\pi^+\pi^ \pi^0\pi^0$            | СР      | $\operatorname{Re}(\varepsilon'/\varepsilon)$ | $(1.65 \pm 0.26) \times 10^{-3}$ (*)                     | $\pm$ 0.2 × 10 <sup>-3</sup>          |
| $\pi^+\pi^ \pi^0\pi^0$            | CP, CPT | $\operatorname{Im}(\varepsilon'/\varepsilon)$ | $(-1.2 \pm 2.3) \times 10^{-3}$ (*)                      | $\pm$ 3 × 10 <sup>-3</sup>            |
| πεν πεν                           | СРТ     | $Re(\delta)+Re(x_{.})$                        | Re(δ) = $(0.25 \pm 0.23) \times 10^{-3}$ (*)             | $\pm$ 0.2 × 10 <sup>-3</sup>          |
|                                   |         |                                               | $\text{Re}(x) = (-4.2 \pm 1.7) \times 10^{-3}$ (*)       |                                       |
| πεν πεν                           | СРТ     | $Im(\delta)+Im(x_{+})$                        | Im( $\delta$ ) = (-0.6 ± 1.9) × 10 <sup>-5</sup> (*)     | $\pm$ 3 × 10 <sup>-3</sup>            |
|                                   |         |                                               | Im(x <sub>+</sub> ) = $(0.2 \pm 2.2) \times 10^{-3}$ (*) |                                       |
| $\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$ |         | Δm                                            | $(5.288 \pm 0.043) \times 10^9 \text{ s}^{-1}$           | $\pm 0.03 \times 10^9 \text{ s}^{-1}$ |

(\*) = PDG 2008 fit

# Perspectives with KLOE-2 at upgraded DA $\Phi$ NE

| Mode                              | Test of                  | Param.            | Present best published                        | KLOE-2                             |
|-----------------------------------|--------------------------|-------------------|-----------------------------------------------|------------------------------------|
|                                   |                          |                   | measurement                                   | L=50 fb <sup>-1</sup>              |
| $\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$ | QM                       | ζ <sub>00</sub>   | $(1.0 \pm 2.1) \times 10^{-6}$                | $\pm$ 0.1 $	imes$ 10 <sup>-6</sup> |
| $\pi^+\pi^ \pi^+\pi^-$            | QM                       | $\zeta_{ m SL}$   | $(1.8 \pm 4.1) \times 10^{-2}$                | $\pm$ 0.2 × 10 <sup>-2</sup>       |
| $\pi^+\pi^ \pi^+\pi^-$            | CPT & QM                 | α                 | $(-0.5 \pm 2.8) \times 10^{-17} \text{ GeV}$  | ± 2 × 10 <sup>-17</sup> GeV        |
| $\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$ | CPT & QM                 | β                 | $(2.5 \pm 2.3) \times 10^{-19} \text{ GeV}$   | ± 0.1 × 10 <sup>-19</sup> GeV      |
| $\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$ | CPT & QM                 | γ                 | $(1.1 \pm 2.5) \times 10^{-21} \text{ GeV}$   | $\pm$ 0.2 × 10 <sup>-21</sup> GeV  |
|                                   |                          |                   |                                               | compl. pos. hyp.                   |
|                                   |                          |                   |                                               | ± 0.1 × 10 <sup>-21</sup> GeV      |
| $\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$ | CPT & EPR corr.          | Re(w)             | $(1.1 \pm 7.0) \times 10^{-4}$                | $\pm 2 	imes 10^{-5}$              |
| $\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$ | CPT & EPR corr.          | Im(w)             | $(3.4 \pm 4.9) \times 10^{-4}$                | $\pm 2 	imes 10^{-5}$              |
| $K_{S,L} \rightarrow \pi e \nu$   | CPT & Lorentz            | $\Delta a_0$      | $[(0.4 \pm 1.8) \times 10^{-17} \text{ GeV}]$ | ± 2 × 10 <sup>-18</sup> GeV        |
| $\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$ | <b>CPT &amp; Lorentz</b> | $\Delta a_{Z}$    | $[(2.4 \pm 9.7) \times 10^{-18} \text{ GeV}]$ | ± 7 × 10 <sup>-19</sup> GeV        |
| $\pi^+\pi^ \pi ev$                | CPT & Lorentz            | Δa <sub>X,Y</sub> | [<10 <sup>-21</sup> GeV]                      | $\pm$ 4 × 10 <sup>-19</sup> GeV    |

[....] = preliminary

# Conclusions

•The neutral kaon system is an excellent laboratory for the study of CPT symmetry and the basic principles of Quantum Mechanics;

•Several parameters related to possible

•CPT violation (within QM)

•CPT violation and decoherence

•CPT violation and Lorentz symmetry breaking

have been recently measured at KLOE, in same cases with a precision reaching the interesting Planck's scale region;

•All results are consistent with no CPT violation

- •The analysis of the full KLOE data sample is completed (apart CPTV and LV);
- •KLOE and DA $\Phi$ NE are going to be upgraded
- •KLOE (KLOE-2) will restart taking data at the end of this year
- Neutral kaon interferometry, CPT symmetry and QM tests are one of the main issues of the KLOE-2 physics program
- •Other interesting QM tests possible, e.g. quantum eraser.