Search for a light pseudoscalar particle in the decay $K_L^0 \rightarrow \pi^0 \pi^0 X$ at the KEK-PS E391a experiment

KAON09 @ Tsukuba, Jun. 11

Yu-Chen Tung (National Taiwan Univ.)

Outline		
Introduction	Analysis	
 Motivation 	 Reconstruction 	
 Theoretical model 	 Background study 	
– E391a experiment	 Results 	

Motivation: HyperCP observation

H. K. Park et al. PRL 94, 021801

- HyperCP experiment observed 3 events for $\Sigma^+ \rightarrow p\mu^+\mu^$ decays with a narrow $M_{\mu\mu}$ distribution around 214.3 MeV
 - Probability to have the $M_{\mu\,\mu}$ distribution within 1 MeV less than 1%
- Signal interpretation: $\Sigma^+ \rightarrow p X, X \rightarrow \mu^+ \mu^-$

GMSB model for X

D. S. Gorbunov and V. A. Rubakov, PRD 73, 035002

The GMSB (Gauge Mediated SUSY Breaking) model said

- Spontaneous SUSY breaking generates Goldstone fermion, called Goldstino, which gives the longitudinal component of gravitino.
- There should exist superpartners of Goldstino: sgoldstinos
- Mass of sgoldstino is arbitrary and can be only a few MeV

And shows HyperCP observation is consistent in model with

- Parity conservation in sgoldstino interaction
- m_x is in reasonable pseudoscalar sglodstino mass region
- Low SUSY breaking scale VF=2.5-60 TeV

GMSB model for X

D. S. Gorbunov and V. A. Rubakov, PRD 73, 035002

For X with mass = 214.3 MeV in GMSB model:

- Possible decay channels: $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ & gravitinos.
- X's BR is almost saturated by $\gamma\gamma$, $\mu^+\mu^-$ channels.
- BR($X \rightarrow \gamma \gamma$) / BR($X \rightarrow \mu^+ \mu^-$) ~ 10⁴.
- The lifetime of X is generally small: $c\tau = 0.02 0.0002$ cm.

$$\Gamma(P \to \gamma \gamma) = \frac{m_P^3 M_{\gamma \gamma}^2}{32\pi F^2}$$

$$\Gamma(P \to \mu \bar{\mu}) = \frac{m_P m_\mu^2 A_\mu^2}{16\pi F^2} \left(1 - \frac{4m_\mu^2}{m_P^2}\right)^{1/2}$$

GMSB model for X

Possible neutral Kaon decays for probing X

D. S. Gorbunov and V. A. Rubakov, PRD 73, 035002

The GMSB model shows:

- BR($K_L^0 \rightarrow \pi^0 \pi^0 X$) is proportional to Re[$h^{(D)}_{12}$]
- h^(D)₁₂ is complex coupling constant only its absolute value known
- if $\operatorname{Re}[h^{(D)}_{12}] = h^{(D)}_{12,}$ $\operatorname{BR}(K_{L}^{0} \rightarrow \pi^{0} \pi^{0} X, X \rightarrow \gamma \gamma) = 1.2 \times 10^{-4}$ $\operatorname{BR}(K_{L}^{0} \rightarrow \pi^{0} \pi^{0} X, X \rightarrow \mu^{+} \mu^{-}) = 1.2 \times 10^{-8}$
- No other mode made the prediction for this decay

The E391a experiment

The experiment was located at the KEK 12 GeV proton-synchrotron in Tsukuba, Japan.

- ✓ ~50 members from 14 institutions
- ✓ Japan, the US, Taiwan, South Korea, and Russia are participants.

Three main Data Runs:

- Run I: February July of 2004
 - ✓ discarded due to a membrane problem
- Run II: February April of 2005
 - ✓ published results of $K_L^0 \rightarrow \pi^0 \pi^0 X$, X → $\gamma \gamma$ analysis
- Run III: October December of 2005

The E391a Detector

- Use CsI calorimeter for photon detection (7x7x30 cm³)
- Veto detectors cylindrically cover the CsI calorimeter
- No momentum-measurement + we use charged veto before CsI \checkmark Hard to measure $K_L^0 \rightarrow \pi^0 \pi^0 X, X \rightarrow \mu^+ \mu^-$

$K_L^0 \rightarrow \pi^0 \pi^0 X, X \rightarrow \mu^+\mu^-$ analysis

Challenge to measure the decay using
the upgraded BA in run-III.
(Lead plate + plastic scinti. + quartz
→ PWO crystal + quartz)

- Small q-values of
 - $\checkmark \ K_L^0 \rightarrow \pi^0 \pi^0 X$
 - $\checkmark X \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$
 - \rightarrow Small open angle of $\mu^{+}\mu^{-}$
- Signal is signatured by
 - ✓ 4 photons on CsI
 - ✓ 2 muons in BA & BHCV
- UP (90% C.L.) <1.7 x 10⁻⁶

 $K_L^0 \rightarrow \pi^0 \pi^0 X, X \rightarrow \mu^+ \mu^-$ analysis is performed by Risa Ogata from Saga University.

$K_L^0 \rightarrow \pi^0 \pi^0 X, X \rightarrow \gamma \gamma analysis:$ Monte Carlo & Signal signature

Both K3pi0 & K2pi0X MC were simulated using GEANT3 and were overlaid with accidental events taken from the target-monitor accidental trigger.

$K_L^0 \rightarrow \pi^0 \pi^0 X$, $X \rightarrow \gamma \gamma$ events are first selected by

- Six photons on CsI calorimeter the same as K3pi0 decays
- No in-time hits on other detectors

Reconstruction

Event is reconstructed using Constrained Fit to require

- ✓ Six photons to have KL mass x1
- ✓ Two photon pairs to have Pion mass x2
- ✓ The KL momentum from target to COE of photons on the CsI plane
- 5 constraints ٠

۲

- 3 unknowns: KL decay vertex (Vx, Vy, Vz)
- Two-degree-of-freedom fit ٠
- 45 possible combinations \rightarrow The combination with Minimum χ^2 is chosen •

In successful reconstructions, M_{56} (mass of 3rd gamma pair)

- Pion mass for K3pi0 decays X mass for K2pi0X decays

$$\chi^2(x_i, y_i, E_i) = \sum \frac{(x_i - x_i^m)^2}{\sigma_x^2} + \sum \frac{(y_i - y_i^m)^2}{\sigma_y^2} + \sum \frac{(E_i - E_i^m)^2}{\sigma_E^2}$$

x2

Selection Condition

Photon Veto			
CC02	CC03	CC04	CC05
3 MeV	0.35 MeV	1 MeV	5 MeV
Inner MB	Outer MB	Inner CV	Outer CV
5 MeV	7 MeV	5 MeV	0.3 MeV
FB	BHCV	BA scint.	BA quartz
5 MeV	0.1 MeV	0.06 GeV	1 MIPs

Kinematical Cut		
KL Z region	250 – 550 cm	
KL pt	< 25 MeV	
Center E of clusters	< 6 cm	
Gamma hit pos.	12.5 cm square from beam – 88 cm circle	
Gamma fusion	Gamma NN > 0.2	
Constrained fit χ^2	< 6	

Reconstruction Results

Background Study

Mis-reconstructed events in 1st combination were Successfully reconstructed in 2nd combination

K3pi0 decay:

- Large BR, BR = 19.56 %
- Six photons in final state same as the K2piOX decays
- \rightarrow Main background source
- → K3pi0 background are mainly due to wrong photon pairing.

Other backgrounds:

K2piO decays, background from other decays....

• MC study shows those backgrounds are negligible

K3pi0 background suppression

x1

Use "full constrained fit" to reject all K3pi0 events

- Six photons to have KL mass
- ✓ Three photon pairs to have Pion mass x3
- ✓ The KL momentum from target to
 COE of photons on the CsI plane
 x2
- Event, which is consistent with K3pi0 decay, has small χ².

Acceptance (cut: $\chi^2 < 50$)

- K3pi0: 0.15 %
- K2pi0X: 61.0 %

Signal extraction

After all cuts on data

- 2 events in signal region (211.3 217.3 MeV)
- 250 events in sideband
 (165 211.3 MeV & > 217.3 MeV)

Use unbinned likelihood method to extract signal

- Signal PDF: double Gaussian function for asymmetric peak
- BKGD PDF: ARGUS function for tail shape

The number of signal events yielded:

• $N_s = -1.4 + 1.7_{-0.9}$

Error estimation

- The signal shape modeling (4.07%)
 - Consider the 1 sigma error in signal shape modeling
- The signal shape difference between data & MC (1.79%)
- The signal efficiency (0.93%)
- **KL flux** (2.88%)
 - Calculated from K3pi0: (1.32 ± 0.04)x10¹¹
 - Use this value for further calculation
 - Calculated from K2pi0: (1.36 ± 0.04)x10¹¹
- **Background shape modeling** ($\triangle Ns = 0.80$)
 - Error from the background shape assumption

Upper Limit

- 2 events observed in signal region
- Signal acceptance: $(1.08 \pm 0.01)10^{-4}$
- KL flux: (1.32±0.04)x10¹¹
 - Calculated from K3pi0 decays
- SES: (7.0 ± 4.0)10⁻⁸
- U.L. at 90% confidence level: 2.4x10⁻⁷
 - Calculated by integrating the likelihood function up to 90% area.

Results of $K_L^0 \rightarrow \pi^0 \pi^0 X$, $X \rightarrow \gamma \gamma$

The results of the X mass region from 194.3 to 219.3 MeV and the X lifetime region from 0 to 10⁻⁹s are all performed.

- ✓ U.L. doesn't change if X lifetime < 10^{-10} s
- ✓ U.L. weaken by a factor of 2-3 if X lifetime 10^{-9} s

Summary

- We performed the $K_L^0 \rightarrow \pi^0 \pi^0 X$, $X \rightarrow \gamma \gamma$ analysis at E391a. No evidence of X is found and the upper limit for $m_{\chi} = 214.3$ MeV is placed at 2.4x10⁻⁷ [PRL 102, 051802].
- The results for different $m_X \& \tau_X$ are also performed. There is no evidence of X found in other mass region, either.
- The $K_L^0 \rightarrow \pi^0 \pi^0 X$, $X \rightarrow \mu^+ \mu^-$ analysis is also performed at E391a by a student from Saga university. There is also no evidence of X and the upper limit is placed at 1.7x10⁻⁶.