KAON 2009

Tsukuba, June 2009

Long-distance effects in Rare and radiative K decays

Christopher Smith

GEFÖRDERT VOM

Outline

Introduction

I-
$$K \rightarrow \pi \nu \overline{\nu}$$

II-
$$K_L \to \pi^0 \ell^+ \ell^-$$

III-
$$K_L \to \ell^+ \ell^-$$

Conclusion

New round of experiments aiming at very rare K decays

Prime targets because of - the *cleanness of their SM predictions*,

- their sensitivity to New Physics.

But, long-distance effects are nevertheless present.

How to deal with these effects?

As usual in ChPT, by relating them to other, well measured observables.

These inputs come essentially from *radiative K decays*.

1

Needed to learn about the QCD – EW interplay at low-energy.

A. Electroweak anatomy of rare & radiative K decays

$u,c,t $ $\geq Z$	CPV: top dominates	$K_2 \to \pi^0 \nu \overline{\nu}$ $K_1 \to \ell^+ \ell^-, K_2 \to \pi^0 \ell^+ \ell^-$		
V \overline{S} W^{\pm} d	CPC: top & charm (+ small correction from up)	$K_1 \rightarrow \pi^0 \nu \overline{\nu}$ $K_2 \rightarrow \ell^+ \ell^-, K_1 \rightarrow \pi^0 \ell^+ \ell^-$		
$u,c,t > \gamma$	CPC: up dominates	$K_1 \to \pi^0 \ell^+ \ell^-$		
V \overline{S} W^{\pm} d	CPV: only top & charm $(\operatorname{Im} V_{ud} V_{us}^{\dagger} = 0)$	$K \to \pi\pi\gamma$ $K_2 \to \pi^0 \ell^+ \ell^-$		
$u,c,t \leq \gamma \leq \gamma$	CPC: up dominates	$K_{1,2} \to \gamma \gamma, K_{1,2} \to \pi^0 \gamma \gamma$		
V \overline{S} W^{\pm} d	CPV: only top & charm (suppressed ~ $1/m_{c,t}$)	$K_{1,2} \to \pi^0 \ell^+ \ell^-$ $K_{1,2} \to \ell^+ \ell^-$		

Mass states are combinations of CP states: $K_L \sim K_2 + \varepsilon K_1$, $K_S \sim K_1 + \varepsilon K_2$ \rightarrow neutral modes have two contributions: direct and (ε -suppressed) indirect.

A. Electroweak anatomy of rare & radiative K decays

$u,c,t $ $\geq Z$	CPV: top dominates	$K_2 \to \pi^0 \nu \overline{\nu}$ $K_1 \to \ell^+ \ell^-, K_2 \to \pi^0 \ell^+ \ell^-$		
V \overline{S} W^{\pm} d	CPC: top & charm (+ small correction from up)	$K_1 \rightarrow \pi^0 \nu \overline{\nu}$ $K_2 \rightarrow \ell^+ \ell^-, K_1 \rightarrow \pi^0 \ell^+ \ell^-$		
$u,c,t > \gamma$	CPC: up dominates	$K_1 \to \pi^0 \ell^+ \ell^-$		
V \overline{S} W^{\pm} d	CPV: only top & charm $(\operatorname{Im} V_{ud} V_{us}^{\dagger} = 0)$	$K \to \pi\pi\gamma$ $K_2 \to \pi^0 \ell^+ \ell^-$		
$u,c,t \leq \gamma \leq \gamma$	CPC: up dominates	$K_{1,2} \to \gamma \gamma, K_{1,2} \to \pi^0 \gamma \gamma$		
V \overline{S} W^{\pm} d	CPV: only top & charm (suppressed ~ $1/m_{c,t}$)	$K_{1,2} \to \pi^0 \ell^+ \ell^-$ $K_{1,2} \to \ell^+ \ell^-$		

Decays of the K^+ proceed through both the "CPC" and "CPV" contributions. Except for $K^+ \to \pi^+ \nu \overline{\nu}$, there is always a dominant up-quark contribution.

A. Electroweak anatomy of rare & radiative K decays

$u,c,t $ $\geq Z$	CPV: top dominates	$K_2 \to \pi^0 \nu \overline{\nu}$ $K_1 \to \ell^+ \ell^-, K_2 \to \pi^0 \ell^+ \ell^-$		
V \overline{S} W^{\pm} d	CPC: top & charm (+ small correction from up)	$K_1 \to \pi^0 \nu \overline{\nu}$ $K_2 \to \ell^+ \ell^-, K_1 \to \pi^0 \ell^+ \ell^-$		
$u,c,t \ge \gamma$	CPC: up dominates	$K_1 \rightarrow \pi^0 \ell^+ \ell^-$		
V \overline{S} W^{\pm} d	CPV: only top & charm $(\operatorname{Im} V_{ud} V_{us}^{\dagger} = 0)$	$K \to \pi\pi\gamma$ $K_2 \to \pi^0 \ell^+ \ell^-$		
$u,c,t \ge \gamma \ge \gamma$	CPC: up dominates	$K_{1,2} \rightarrow \gamma \gamma, K_{1,2} \rightarrow \pi^0 \gamma \gamma$		
V \overline{S} W^{\pm} d	CPV: only top & charm (suppressed ~ $1/m_{c,t}$)	$K_{1,2} \to \pi^0 \ell^+ \ell^-$ $K_{1,2} \to \ell^+ \ell^-$		

When there are direct LD contributions, they usually dominate.

New Physics can be significant when SD is significant (exception: asymmetries!).

B. Probing EW structures with rare K decays

EW Penguin	SM and/or example of SUSY diagram	Contributes to	
SZ	$u_L^i \stackrel{\textstyle >}{\stackrel{\textstyle >}{}} Z$ $\widetilde{u}_{L,R}^i \stackrel{\textstyle >}{\stackrel{\textstyle >}{}} Z$	$K \to \pi \nu \overline{\nu}$ $K_L \to \pi^0 \ell^+ \ell^-$	
$ar{ar{s}_L}$ $ar{d}_L$	V \overline{s}_L W^{\pm} d_L Z^U \overline{s}_L χ^{\pm} d_L	$K_L \to \ell^+ \ell^-$	
\overline{s}_L d_L	U_L^i V V V Z^D $Z^$	$K_L \to \pi^0 \ell^+ \ell^ K \to \pi\pi\gamma$	
\overline{S}_L \overline{S}_L \overline{S}_L	h^0, H^0, A^0 $\overline{S}_{L,R}$ $d_{R,L}$ u_R \widetilde{u}_L d_R^0 \widetilde{u}_L d_R^1 d_R^1 d_R^1 d_R^1 d_R^1	$K_L ightarrow \pi^0 \mu^+ \mu^ K_L ightarrow \mu^+ \mu^-$ (helicity-suppressed)	

New Physics to be identified by looking at *patterns of deviations*!

 $K \to \pi \nu \overline{\nu}$

A. Where are the long-distance effects?

u,c,t Z	CPV: top dominates	$K_{1} \to \pi^{0} \nu \overline{\nu}$ $K_{1} \to \ell^{+} \ell^{-}, K_{2} \to \pi^{0} \ell^{+} \ell^{-}$		
V \overline{S} W^{\pm} d	CPC: top & charm (+ small correction from up)	$K_1 \rightarrow \pi^0 \nu \overline{\nu}$ $K_2 \rightarrow \ell^+ \ell^-, K_1 \rightarrow \pi^0 \ell^+ \ell^-$		
$u,c,t \ge \gamma$	CPC: up dominates	$K_1 \to \pi^0 \ell^+ \ell^-$		
$V \sim V$	CPV: only top & charm	$K o \pi\pi\gamma$		
\bar{s} W^{\pm} d	$(\operatorname{Im} V_{ud} V_{us}^{\dagger} = 0)$	$K_2 \to \pi^0 \ell^+ \ell^-$		
$u,c,t \leq \gamma \leq \gamma$	CPC: up dominates	$K_{1,2} \rightarrow \gamma \gamma, K_{1,2} \rightarrow \pi^0 \gamma \gamma$		
V	CPV: only top & charm	$ K_{1,2} \to \pi^0 \ell^+ \ell^- $		
\overline{S} W^{\pm} d	(suppressed ~ $1/m_{c,t}$)	$K_{1,2} \to \ell^+ \ell^-$		

These modes probe exclusively the Z penguin (and W box). Dominated by short-distance physics, but...

A. Where are the long-distance effects?

1. LD effects for the top/charm "pure" SD contribution = matrix elements

$$Q_{eff} = (\overline{s}d)_V \otimes (\overline{v}v)_{V-A} \rightarrow \langle \pi | (\overline{s}d)_V | K \rangle$$

2. The up-quark pure LD contribution (*CP-conserving*)

B. Matrix elements of the dimension-six operator

Mescia, C.S. '06

The "mesonic dressings" of $Q_{\it eff}$ is very similar to those for the Fermi operator:

The *vector and scalar form-factors* are needed (values at zero and slopes). *Isospin-breaking effects*, $\varepsilon^{(2)} \sim m_d - m_u \sim 1\%$, must be included! For that, two *very clean ratios* can be used:

$$r(q^{2}) = \frac{f_{+}^{K^{+}\pi^{0}}(q^{2})f_{+}^{K^{0}\pi^{0}}(q^{2})}{f_{+}^{K^{+}\pi^{+}}(q^{2})f_{+}^{K^{0}\pi^{+}}(q^{2})} = 1 + \mathcal{O}((\epsilon^{(2)})^{2}) = 1.0000(2)$$

$$r_{K} = \frac{f_{+}^{K^{+}\pi^{+}}(0)}{f_{+}^{K^{0}\pi^{+}}(0)} = 1.00027(8) + \epsilon^{(2)}0.12(7) = 1.0015(7)$$

$$\epsilon^{(2)}\delta_{LR}$$
(NLO + partial NNLO)

Mescia, C.S. '06

For the slopes:
$$\frac{\lambda_{+}^{FCNC}}{\lambda_{+}^{CC}} = \frac{M^2(K^{*+})}{M^2(K^{*0})} = 0.990 \ (\pm 0.005)$$

The Flavianet fit to $K_{/3}$ form-factors & slopes (2008) leads to

$$\kappa_{v} \sim \int d\Phi_{3} |\langle \pi v \overline{v} | Q_{eff} | K \rangle|^{2}$$

			Exp.			h.		
		$ au_+$	f(0)	slopes	r_K	r	Future?	
$\kappa_{\rm V}^+$	0.5168(25)	19%	43%	21%	17%	-	±0.0023	8
$\kappa_{\rm v}^0$	2.190(18)	-	77%	12%	9%	2%	±0.013	$O_{SU(2)}$

$$\frac{\kappa_{V}^{+}}{\kappa_{V}^{0}} = 0.2359(17)$$
 (Future? ± 0.0008)

Still room for improvement on the experimental side.

C. Long-distance up-quark contribution

Isidori, Mescia, C.S. '05

Naïve inclusion of the Z through the covariant derivative in ChPT produces

How to disentangle the genuine up-quark contribution?

Remove from the ${\bf Z}$ coupling any ${\bf Q}_{\it eff}$ structure.

Ask that the Z coupling does not induce a local $K_L \to Z$ coupling.

Many unknown counterterms, part of them occurring in $K^+ \to \pi^+ \gamma^* \to \pi^+ \ell^+ \ell^-$.

Overall, these contributions are small, about 10% of the charm contribution. (expected from the behavior of the Z penguin $\sim m_q^2$).

$$K_L \to \pi^0 \ell^+ \ell^-$$

A. Where are the long-distance effects?

Indirect CPV

CPC

(Long-distance)

(Long-distance)

B. Direct CPV: Matrix elements of the dimension-six operators

Mescia, C.S. '06

LD effects for the top/charm "pure" SD contribution = matrix elements

$$Q_{eff}^{V} = (\overline{s}d)_{V} \otimes (\overline{\ell}\ell)_{V}, \ Q_{eff}^{A} = (\overline{s}d)_{V} \otimes (\overline{\ell}\ell)_{A}$$

As for $K \to \pi \nu \overline{\nu}$, those are extracted from $K_{\ell 3}$ decays:

		Exp.				n.	
		$ au_{\!\scriptscriptstyle{+}}$	f(0)	slopes	r_K	r	Future?
$\kappa_e^{V,A}$	0.7691(64)	-	77%	12%	9%	2%	±0.0046
κ^V_{μ}	0.1805(16)	-	73%	16%	8%	2%	±0.0011
κ_{μ}^{A}	0.4132(51)	-	54%	38%	6%	2%	±0.0031

$$\kappa_{\ell}^{V,A} \sim \int d\Phi_3 \left| \langle \pi^0 \ell \overline{\ell} \right| Q_{eff}^{V,A} \left| K_L \rangle \right|^2$$

Already very precise compared the other contributions.

D'Ambrosio et al. '98

C. Indirect CPV: Long-distance photon penguin

Indirect CP-violation is $K_L \to \varepsilon K_1 \to \pi^0 \ell^+ \ell^-$, related to $K_S \to K_1 \to \pi^0 \ell^+ \ell^-$:

Loops are rather small, a single counterterm a_S dominates.

It is fixed from $K_S \to \pi^0 \ell^+ \ell^-$ (up to its sign) measured by NA48:

C. Indirect CPV: Long-distance photon penguin

This CT is the main source of error for

Besides $K_S \to \pi^0 \ell^+ \ell^-$, the paths to constrain or measure a_S are:

- The decay $K^+ \to \pi^+ \ell^+ \ell^-$ is similar, dominated by a_+ , theory can approximately relate the two $(a_S \sim 2N_{14} + N_{15}, a_+ \sim N_{14} N_{15})$.
 - e.g. Buchalla, D'Ambrosio, Isidori '03, Greynat, Friot, de Rafael '04; see also Bruno, Prades '03
- $K_L \to \pi^0 \pi^0 \ell^+ \ell^-$ depends on the same a_S and is sensitive to its sign. However, its branching is $\leq 10^{-9}$ for $\ell = e$ (KTeV limit: $< 6.6 \times 10^{-9}$).

Funck, Kambor '93

- FB asymmetries for $K_L \to \pi^0 \mu^+ \mu^-$ could fix the sign.

Mescia, Trine, C.S. '06

D. CPC: Long-distance double photon penguin

LO (p^4) is finite, produces $\ell^+\ell^-$ in a scalar state only (helicity-suppressed),

Higher order estimated using the $K_L \to \pi^0 \gamma \gamma$ rate and spectrum:

- Production of $(\mu^+\mu^-)_{0^{++}}$ under control within 30%.
 - Isidori, Unterdorfer, C.S. '04
- No signal of $(\gamma\gamma)_{2^{++}}$ implies $(e^+e^-)_{2^{++}}$ is negligible. $(K_{\varsigma} \to \gamma \gamma)$ is also useful to constrain the p^6 CT structure)

Buchalla, D'Ambrosio, Isidori '03

E. Indirect accesses to the photon penguin

1. Direct CP-asymmetry
$$A_{CP} = \frac{\Gamma(K^+ \to \pi^+ \ell^+ \ell^-) - \Gamma(K^- \to \pi^- \ell^+ \ell^-)}{\Gamma(K^+ \to \pi^+ \ell^+ \ell^-) + \Gamma(K^- \to \pi^- \ell^+ \ell^-)}$$

Sensitive to the interference between the up γ penguin and charm, top contributions. Expected to be in the 10^{-5} range in the SM.

e.g. D'Ambrosio et al. '98

2. Direct CP-asymmetry
$$A_{CP} = \frac{\Gamma(K^+ \to \pi^+ \pi^0 \gamma) - \Gamma(K^- \to \pi^- \pi^0 \gamma)}{\Gamma(K^+ \to \pi^+ \pi^0 \gamma) + \Gamma(K^- \to \pi^- \pi^0 \gamma)}$$

Sensitive to EM operator, again expected to be small in the SM (10^{-5}).

e.g. D'Ambrosio, Isidori. '95

3. Phase-space asymmetries for $K_L \to \pi^+\pi^-\gamma^*$

Large, but dominated by indirect CPV effects ($K_L \to \varepsilon K_1 \to \pi^+\pi^-$)

e.g. D'Ambrosio, Isidori. '95

4. BUT: $K_L \to \pi^0 \ell^+ \ell^-$ is richer since it probes also the Higgs penguins.

$$K_L \to \ell^+ \ell^-$$

A. Where are the long-distance effects?

Indirect CPV

CPC

(Negligible)

(Long-distance)

B. Detailed structure of the $K_L \to \ell^+ \ell^-$ process

- Nearly saturated by $Abs(\gamma\gamma)$ since $B^{\text{exp}} = 6.87(11) \cdot 10^{-9}$ (smaller exp. error?)
- Short-distance is CPC, and interfere with the $\gamma\gamma$ contribution (*sign*?)
- The dispersive part $Disp(\gamma\gamma)$ diverges (how to estimate it reliably?)

C. The two-photon decay $K_L \rightarrow \gamma \gamma$

Gérard, Trine, C.S '05

The *SU*(3) pole amplitude vanishes:

$$\frac{K^0}{G_8,G_{27}} \stackrel{\pi^0,\eta_8}{\longrightarrow} \gamma$$

The decay is driven by $Q_1^u = (\overline{s}d) \otimes (\overline{u}u)$, but there is no linear combinations such that $\alpha \pi^0 + \beta \eta_8 = \overline{u}u!$

Same mechanism at play in $K_L \to \pi^+\pi^-\gamma$ & ΔM_K : $\frac{K^0}{}$

To *consistently* account for NLO corrections (unknown CTs), *go first to U(3)*.

Leading N_c SU(3)- $\mathcal{O}(p^6)$ CTs all collapse to a single parameter G_8^s .

$$\frac{K^{0}}{G_{8}, G_{27}, G_{8}^{s}} \xrightarrow{\pi^{0}, \eta, \eta'} \begin{array}{c} \gamma \\ \approx \overline{(G_{8}^{s} + \frac{2}{3}G_{27})} \Big((0.46)_{\pi} - (1.83)_{\eta} - (0.12)_{\eta'} \Big) \end{array}$$

Using the experimental value $B(K_L \to \gamma \gamma)^{\exp} \Rightarrow G_8^s / G_8 \approx \pm \frac{1}{3}$.

D. The SD-LD interference sign in $K_L \to \ell^+ \ell^-$

Gérard, Trine, C.S '05

Requires the sign of the $K_L \to \gamma \gamma$ amplitude \Leftrightarrow Sign of G_8^s .

1- Theoretical clues:

$$H_{eff} (\mu > 1 \text{GeV}) = z_1 Q_1^u + z_2 Q_2^u + z_6 Q_6^u + \dots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H_{eff} (\mu_{hadr.}) = -(G_8^s + \frac{2}{3} G_{27}) \tilde{Q}_1 + (G_8^s - G_{27}) \tilde{Q}_2 - (G_8 + G_8^s - \frac{1}{3} G_{27}) \tilde{Q}_6 + \dots$$

If the non-perturbative evolution of Q_1^u & Q_2^u is ~smooth (no sign change):

$$(z_1 + z_2)^2 (z_2 - z_1) = 1.0 \pm 0.3 \implies G_8^s / G_8 = -0.38(12)$$

One can then resolve the current-current vs. penguin fraction in $K \to \pi\pi$:

$$\tilde{Q}_{1,2}:35\% \leftrightarrow \tilde{Q}_6:65\%$$

Penguins account for ~2/3 of the $\Delta I = \frac{1}{2}$ rule (at the hadronic scale, not at $m_c!$).

2- Experimentally, G_8^s could be fixed from $K_S \to \pi^0 \gamma \gamma$:

Gérard, Trine, C.S '05

$$B(K_S \to \pi^0 \gamma \gamma)_{z>0.2}^{\text{exp}} = (4.9 \pm 1.8) \cdot 10^{-8}$$

or from pole contributions to $K^+ \to \pi^+ \gamma \gamma$

(even more constraining at the low-energy end of the γ spectrum)

E. The dispersive two-photon contribution to $K_L \to \ell^+ \ell^-$

Isidori, Unterdorfer '03

The $\gamma\gamma$ loop diverges (requires *unknown CTs*) for a constant vertex:

CTs estimated by accounting for the momentum-dependence of the vertex as

$$f(q_1^2, q_2^2) = \sum_{i} \left(1 + \alpha_i \left(\frac{q_1^2}{q_1^2 - m_i^2} + \frac{q_2^2}{q_2^2 - m_i^2} \right) + \beta_i \frac{q_1^2 q_2^2}{(q_1^2 - m_i^2)(q_2^2 - m_i^2)} \right)$$

With two resonances: ρ + one around J/ψ .

Low-energy contraints from the $K_L \to \gamma e^+ e^-$, $\gamma \mu^+ \mu^-$, $e^+ e^- \mu^+ \mu^-$ linear slope. (We would need also the quadratic slope, and other modes like $\mu^+ \mu^- \mu^+ \mu^-$!)

High-energy constraints from the perturbative up & charm-quark $\gamma\gamma$ penguin.

Trine, C.S. 'soon

F. $K_L \rightarrow \mu^+ \mu^-$ summary --- Preliminary ---

- $G_8^s / G_8 < 0 \implies$ constructive interference between SD and LD.
- Updating the analysis, we find $Disp(\gamma\gamma) = -0 \pm 1.5$, Compared to $Disp(\gamma\gamma) = \pm 0.7 \pm 1.15$

Isidori & Unterdorfer '03

$$K_L \rightarrow \pi^0 \nu \overline{\nu}$$
:
 $\overline{\eta} < 17$
 $K_L \rightarrow \pi^0 e^+ e^-$:
 $\overline{\eta} < 3.3$
 $K_L \rightarrow \pi^0 \mu^+ \mu^-$:

 $\overline{\eta}$ < 5.4

Conclusion

Conclusion

