

ETMC results for Kaon Physics:

dynamical twisted mass lattice QCD

Federico Mescia

Universitat de Barcelona

on behalf of the European Twisted Mass Collaboration (ETMC)

No. CON	►	Cyprus (Nicosia) C. Alexandrou, T. Korsec, G. Koutsou
		France (Orsay, Grenoble, CEA) R. Baron, B. Blossier, Ph. Boucaud, M. Brinet, J. Carbonell, V. Drach, P. Guichon, P.A. Harraud, M. Papinutto, O. Pène
		Germany (Berlin, Zeuthen, Hamburg, Münster) F. Farchioni, X. Feng, J. González López, G. Herdoiza, K. Jansen, I. Montvay, G. Münster,
		D. Renner, T. Sudmann, C. Urbach, M. Wagner Italy (Roma I, II, III, Trento)
		P. Dimopoulos, R. Frezzotti, V. Lubicz, G. Martinelli, G.C. Rossi, L. Scorzato, S. Simula, C. Tarantino, A. Vladikas
		A Deuzeman E Pallante S Reker
		Poland (Poznan)
		K. Cichy
**		Spain (Barcelona, Sevilla, Valencia)
		F. De Soto, V. Giménez, F. Mescia, D. Palao, J. Rodríguez Quintero
		Switzerland (Belu)
		UK (Cambridge, Glasgow, Liverpool) Z. Liu, C. McNeile, C. Michael, A. Shindler

KAON 2009, June 7th-12th, Tsukuba, Japan

Simplest Kaon Observables on the lattice:

Hadronic uncertainties from

 $\langle \pi | \bar{s} \gamma^{\mu} u | K \rangle \Leftrightarrow f_{+,0}(q^2)$

 $f_{+}(0), \lambda_{+0}, c_{+0}$?

2) <u>Helicity suppressed decays</u> -> sensitivity to the Higgs sector/r.h. quarks

Hadronic uncertainties from

 $\langle 0|\bar{s}\gamma^{\mu}\gamma_{5}u|K\rangle = p^{\mu}f_{K}$

$$f_{K} f_K / f_{\pi}$$
?

3) <u>FCNC processes</u> -> SUSY, Little Higgs

Hadronic uncertainties from $\langle \overline{K} | \overline{s} \gamma_L^{\mu} d\overline{s} \gamma_L^{\mu} d | K \rangle = 8/3 (f_K m_K)^2 B_K$

Warning: sub-leading effects, no longer negligible in ε_K A.Buras & D.Guadagnoli '08,'09 • Lattice simulations with dynamical quarks are now well established

Already available important results:

Chiral Regime of QCD

A problem with (old) lattice simulations: Incompatibility with ChPT?

$$m_{\pi}^2 = M^2 \left[1 + \frac{M^2}{32\pi^2 F^2} \log \left(M^2 / \Lambda_3^2 \right) + \dots \right], \quad M^2 = 2Bm$$

Chiral Regime of QCD

No more problems with (new) lattice simulations: Good compatibility with ChPT

Similar plots by other collaborations (using different approaches)

Twisted Mass Fermions (tmLQCD): Properties Frezzotti, Grassi, Sint & Weisz 1999

$$S_{sea}^{TW} = \sum_{x} \overline{q_f} \left(\widehat{\nabla}^{\mu} \gamma^{\mu} + m_{q_f} + ia\gamma_5 r_f W_{term} \right) \cdot q_f$$

* Discretized QCD Action + a "generalized" Wilson term, W_{term} : Wilson 1974

- **Y** up and down flavors as doublets in the *r*-Wilson parameter space: $r_u = 1$, $r_d = -1$
- Successful studies for both $N_F = 2$ and $N_F = 2 + 1 + 1$

protection against unphysical small eigenvalues:

stable simulations for light pions

- 🙂 low computation cost
- \odot only $\mathcal{O}(a^2)$ lattice discretization errors Frezzotti & Rossi 2003
- \bigcirc simple renormalization pattern => $f_{\pi,K}$, B_K Frezzotti & Rossi 2005

Sexplicit breaking of parity and isospin: however, this breaking is an $\mathcal{O}(a^2)$ effect in physical quantities

♦ <u>Vector Weak Universality</u> ⇒

 $V_{us} f_{+}(0) = 0.21668(45) \Rightarrow V_{us}^{Kl3} = 0.2267(5)(22)$ **exp:0.21%** $|V_{ud}|^{2} + |V_{us}|^{2} = 1.0004(15)$ **th:0.9%!!** $f_{+}(0) = 0.956(6)_{fit}(6)_{syst}$ **ETMC in preparation**

Systematics Overview: finite L and a

ETMC arXiV:0904.0954

ETMC arXiV:0904.0954

Combined fit of chiral dependence $+(a^2)$ and (L) corrections

► Chiral-fit: SU(2) ChPt for μ_l + Linear dep. of LECS in "strange quarks"

$$f_{\rm PS}(\mu_{l},\mu_{l},\mu_{s}) = (f_{0}^{(K)} + f_{m}^{(K)}\xi_{ss}) \cdot \left[1 - \frac{3}{4}\xi_{II}\ln\xi_{II} + (b_{0}^{(K)} + b_{m}^{(K)}\xi_{ss})\xi_{II} + (A_{\alpha} + A_{\alpha s}\xi_{ss})\frac{a^{2}}{r_{0}^{2}}\right] \cdot K_{\rm FSE}(L)$$

where $\xi_{II} = m_{\rm PS}^{2}(\mu_{\rm sea},\mu_{I},\mu_{I})/(4\pi f_{0})^{2}$ in terms of meson masses

European Twisted Mass Collaboration

ETMC arXiV:0904.0954

A fit based on NLO SU(3)-ChPT finds good compatibility

 $f_K/f_{\pi} = 1.210(5)$ su(3) 1.210(5) su(2)

However SU(3)-ChPT looks less robust that SU(2)

 $f_K = 158.1(0.8)(2.0)(1.1)$ MeV , $f_K/f_\pi = 1.210(6)(15)(9)$,

Warning from ETMC: Continu	um Limit important!
2007 →	2009
f_{κ}/f_{π} :1.227(9)(24) \rightarrow	1.210 (18)

$$\Gamma(K_{\ell 3(\gamma)}) \propto \left|V_{us}
ight|^2 f_+(0)^2$$

***** ETMC determination of $f_{+}(q^2)$ at $q^2=0$

ETMC in preparation

 $\bigotimes N_F = 2 \rightarrow$ the strange quark is quenched

e) one lattice spacing: a≈0.09fm, other values in progress:

⇒ to estimate systematics we exploit a≈0.07fm for M_{π} ≈ 300 & 470 MeV

 \bigcirc *LM*_{π} \ge 4 to keep finite size effects negligible

L=2.9fm

V=32³x64

№ *M*_π ≈ 260, 300, 375, 435, 470, 575 MeV

L=2.2fm

 $V=24^{3}x48$

(unitarity pions $\mu_l = \mu_{sea}$)

(a) several q^2 in order to extract $f_{+,0}(q^2)$ at $q^2 = 0$ $\langle K | \bar{s} \gamma^{\mu} u | \pi \rangle = f_+(q^2) \left((p_K + p_{\pi})^{\mu} - \frac{M_K^2 - M_{\pi}^2}{q^2} q^{\mu} \right) + f_0(q^2) \frac{M_K^2 - M_{\pi}^2}{q^2} q^{\mu}$ $f_+(0) = f_0(0)$

1)Extracting $f_{+}(0)$ from $f_{0+}(q^2)$ $(f_{0+}(q^2)$ by appropriate double-ratios, FNAL'02, SPQCD'04) 1.1 ---quadratic f pole f $f_0(q^2)$ $f_{+}(0) = f_{0}(0)$ 1.0 ---quadratic f $-pole f_{+}$ f_(q²) $f_{+}(q^2)$ 0.9 $f_{0}^{2}(q^{2}),$ 0.8 $M_{\mu} \sim 580 \text{ MeV}$ 0.7 M ~ 300 MeV 0.6 -0.4 -0.3 -0.2 -0.5 -0.1 0.0 0.1 q^2 (GeV²) quadratic fit pole fit $f_{0,+}(q^2) = \frac{f_{+}(0)}{(1 - s_{0,+}q^2)} \qquad f_{0,+}(q^2) = \frac{f_{+}(0)}{(1 + s_{0,+}q^2 + c_{0,+}q^4)}$ Systematic uncertainty in the determination of $f_+(0)$

Chiral Extrapolation for $f_+(0)$

$\begin{array}{c c} M_{\pi} \\ (\text{MeV}) \end{array}$	$\begin{array}{c} M_K^{ref} \\ (\text{MeV}) \end{array}$	$\begin{array}{c} f_+(0)\\ \text{(pole)} \end{array}$	$\begin{array}{c} f_+(0) \\ (\text{quadratic}) \end{array}$
260	520	0.97519 (499)	0.97374(505)
300	530	0.98052 (440)	0.97950(390)
375	555	0.98916(264)	0.98813(248)
435	575	0.99343 (130)	0.99273(131)
470	590	0.99421 (79)	0.99413 (85)
575	635	0.99823 (15)	0.99827 (19)

<u>SU(3)-CHPt</u>

$$f_{+}(0) = 1 + (M_{K}^{2} - M_{\pi}^{2})^{2}$$

$$f_{+}(0) = 1 + f_{2} + \Delta f$$

$$f_{2} = -0.023$$
(NO UNCERTAINTY!)
NO LECS

 Δf on the lattice? => $f_+(0)$

SU(2) CHPT

Expansion for $M_{\pi} \ll M_{K}$

$$f_{+}(0) = F_{+} - \frac{3}{4} \frac{M_{\pi}^{2}}{16\pi^{2} f_{\pi}^{2}} \log\left(\frac{M_{\pi}^{2}}{\mu^{2}}\right) + c_{+}(\mu) M_{\pi}^{2}$$

 F_{+} and c_{+} are LEC's depending on m_s

 F_+ and C_+ on the lattice? => $f_+(0)$

Chiral extrapolation I: SU(3)-ChPT

 $A_0 + A_1 M_{\pi}^2 + A_2 M_{\pi}^4$ $A_0 + A_1 M_{\pi}^2 + A_3 M_{\pi}^2 \log(M_{\pi}^2)$

* dominant chiral logs from f_2^{PQ} * smooth extrapolation for Δf

 $\Delta f = -0.0233(61)(32) \quad \langle --\rangle \quad f_{+}^{SU(3)}(0) = 0.9599(61)(32)$ Stat. error chiral & q² fit uncertainties

Chiral extrapolation II: SU(2)-ChPT

$$f_{+}(0) = F_{+} - \frac{3}{4} \frac{M_{\pi}^{2}}{16\pi^{2} f_{\pi}^{2}} \log\left(\frac{M_{\pi}^{2}}{\mu^{2}}\right) + c_{+}(\mu)M_{\pi}^{2} + O(M_{\pi}^{4})$$

 $F_{\text{+}}$ and $e_{\text{+}}$ are LEC's depending on m_{s}

- - - SU(2) NLO (lowest three points: M_{π} < 400 MeV

SU(2) NLO + quadratic term ∞M_{π}^4

$$f_{+}^{SU(2)}(0) = 0.9563(53)(13)$$

Stat. error chiral & q² fit uncertainties

(Preliminary)

 $f_{+}(0) = 0.9581(57)(35)$

LUropeo

 $f_{+}^{SU(3)}(0) = 0.9599(61)(32)$ $f_{+}^{SU(2)}(0) = 0.9563(53)(13)$

Estimate of remnant systematics: L, a & m_s-quenched (awaiting for a complete systematics study)

Finite size effects: add (in quadrature) 0.0019 to sys..

by comparing $M_{\pi} \approx 300$ between L=24 & L=32

Finite lattice spacing: add +0.0037 to c. value & sys.

by comparing $M_{\pi} \approx 300 \& 470 \text{ MeV}$ between a=0.09 & 0.07 fm

Quenching m_s (NF=2 vs NF=2+1): -0.0058 to c. value, 0.0029 to sys.

 $f_2^{NF=2+1}-f_2^{NF=2}$ known in SU(3)-CHPT

 $f_{+}(0) = 0.9560(57)_{stat}(62)_{syst} = 0.9560 \pm 0.0084$

 $f_{+}(0) = 0.9560(57)_{stat}(62)_{syst} = 0.9560 \pm 0.0084$ (Preliminary)

B_K from N_F =2 tmQCD: (Preliminary)

JLOCD:
$$N_F = 2$$
: **Overlap**
 \otimes no continuum limit
 $= > a^{-1} = 1.67$ GeV,
L=1.9 fm, m _{π} >=290

$$B_{K}^{RGI} = 0.739(25)(?)$$

(Very Preliminary)

Determination of $B_{\rm K}$

$$\langle \overline{K} | \overline{s} \gamma_L^{\mu} d\overline{s} \gamma_L^{\mu} d | K \rangle = \frac{8}{3} (f_K m_K)^2 B_K$$

***** ETMC determination of B_{κ}

 \mathfrak{S} Notoriously, Wilson fermions are problematic for $B_{\kappa_{\mathfrak{F}}}$

YWilson Fermions→<u>no chiral symmetry→ mixing with dim-6 operators</u>

Way Out: combining Wilson fermions with different r-parameters

Frezzotti & Rossi hep-lat/0407002

► Chiral-fit Setup: $SU(2)_L \times SU(2)_R$ fit (μ_l) + static strange quarks (μ_h)

Unitarity case

$$B_{K}^{bare}(\mu_{h},\mu_{v}=\mu_{sea}) = B_{\chi}^{bare}(\mu_{h}) \left[1 + \left(P_{v}(\mu_{h}) + P_{sea}(\mu_{h}) \right) \mu_{sea} - \frac{2B_{0}}{32\pi^{2}f_{0}^{2}} \mu_{sea} \log \mu_{sea} \right]$$

Renormalization Constants in RI-MOM scheme: PRELIMINARY

$$B_K(\operatorname{ren}) = \mathcal{Z}B_K(\operatorname{bare})$$

rRGI

Substraction of $\mathcal{O}(a^2g^2)$ by explicit calculation

H. Papadopoulos et al. '09

⊗ N_F = 2: © continuum limit
 © sea q. masses dep.
 ⊙ NP-renormalisation
 ⊗ Quenching the strange

 $B_{K}^{RGI} = 0.739(25)$ (Very Preliminary)

Summary of Kaon Physics from ETMC

Chiral Regime of QCD - summary

• SU(2) chiral perturbation theory

$$m_{\pi}^{2} = M^{2} \left[1 + \frac{M^{2}}{32\pi^{2}F^{2}} \log \left(M^{2}/\Lambda_{3}^{2} \right) + \dots \right], \qquad \bar{l}_{3} = \log \frac{\Lambda_{3}^{2}}{m_{\pi}^{2}} = 2.9 \pm 2.4, \qquad \bar{l}_{4} = \log \frac{\Lambda_{4}^{2}}{m_{\pi}^{2}} = 4.4 \pm 0.2.$$
$$f_{\pi} = F - \frac{M^{2}}{16\pi^{2}F^{2}} \log \left(M^{2}/\Lambda_{4}^{2} \right) + \dots \qquad \text{Colangelo, Gasser & Leutwyler '01}$$

a

- First hints of chiral Logs by different approaches and groups:
 - great success from Lattice approaches based on first principle; Wilson-like, Overlap and Domain-Wall fermions
 - Information qualitatively deeper than using Staggered fermions; no clear clue of chiral logs because of fits with ~40 parameters

 \Box a slight lower value of I₃-bar with staggered fermions (MILC)!!!

Twisted Mass QCD Fermions: isospin breaking

	β	$a\mu_q$	R _O
$a f_{PS}$	3.90	0.004	0.04(06)
	4.05	0.003	-0.03(06)
am_V	3.90	0.004	0.02(07)
	4.05	0.003	-0.10(11)
$af_{\rm V}$	3.90	0.004	-0.07(18)
	4.05	0.003	-0.31(29)
am_{Δ}	3.90	0.004	0.022(29)
	4.05	0.003	-0.004(45)

 $R_O = (O^{\pm} - O^0)/O^{\pm}$, measuring the isospin breaking effects in twisted mass lattice QCD.

- a, L & m_{π} Systematics at 1%. - How far are we?

$$f_{K}/f_{\pi}-1$$

$$f_{K}/f_{\pi}-$$

discretization errors:
 finite size effects: L*m_π ≥4.0
 chiral regime:

