Study of $K \rightarrow \mu \nu \gamma$ decay

ISTRA+ SETUP

at

Viacheslav Duk, INR Moscow

For ISTRA+ collaboration

Outline

- $K \rightarrow \mu \nu \gamma$ decay
- ISTRA+ experiment
- Event selection
- Spectrum tuning
- Background rejection
- Signal extraction
- Spectrum fitting
- Results
- Conclusions

$K \rightarrow \mu \nu \gamma$ decay: introduction

- Motivation
- Differential decay rate
- F_V and F_A theoretical predictions
- Experiments

$K \rightarrow \mu \nu \gamma$ decay: motivation

$K \rightarrow \mu \nu \gamma$ theory: differential decay rate

 $\begin{aligned} \frac{d\Gamma_{K_{\mu\nu\gamma}}}{dxdy} &= A_{IB}f_{IB}(x,y) \\ &+ A_{SD}[(F_V + F_A)^2 f_{SD^+}(x,y) + (F_V - F_A)^2 f_{SD^-}(x,y)] \\ &- A_{INT}[(F_V + F_A)f_{INT^+}(x,y) + (F_V - F_A)f_{INT^-}(x,y)], \end{aligned}$

3 main terms: IB – dominant SD±, INT± - most interesting ($\rightarrow F_v, F_A$)

> Kinematical variables: $x=2^{*}E_{\gamma}(cm)/M_{k}$ $y=2^{*}E_{\mu}(cm)/M_{k}$

$$\begin{split} f_{IB}(x,y) &= \left[\frac{1-y+r}{x^2(x+y-1-r)}\right] \\ &\times \left[x^2+2(1-x)(1-r)-\frac{2xr(1-r)}{x+y-1-r}\right], \\ f_{SD^+} &= [x+y-1-r][(x+y-1)(1-x)-r], \\ f_{SD^-} &= [1-y+r][(1-x)(1-y)+r], \\ f_{INT^+} &= \left[\frac{1-y+r}{x(x+y-1-r)}\right][(1-x)(1-x-y)+r], \\ f_{INT^-} &= \left[\frac{1-y+r}{x(x+y-1-r)}\right][x^2-(1-x)(1-x-y)-r], \end{split}$$

$$\begin{split} r &= \left[\frac{M_{\mu}}{M_{K}}\right]^{2},\\ A_{IB} &= \Gamma_{K_{\mu 2}} \frac{\alpha}{2\pi} \frac{1}{(1-r)^{2}},\\ A_{SD} &= \Gamma_{K_{\mu 2}} \frac{\alpha}{8\pi} \frac{1}{r(1-r)^{2}} \left[\frac{M_{K}}{F_{K}}\right]^{2},\\ A_{INT} &= \Gamma_{K_{\mu 2}} \frac{\alpha}{2\pi} \frac{1}{(1-r)^{2}} \frac{M_{K}}{F_{K}}. \end{split}$$

$K \rightarrow \mu v \gamma$: main experimental results

experiment	collaboration	year	cuts	results
Barmin et al		1988	P_{μ} < 231.5 MeV/c	BR(IB)
Demidov et al		1990	P_{μ} < 231.5 MeV/c	BR(IB)
Akiba et al	E104 (KEK)	1985	214.5 < P _µ < 231.5 MeV/c	BR(IB)
Adler et al	E787 (BNL)	2000	P _μ > 218.4 MeV/c E _γ > 90 MeV	F _v + F _A , BR(SD+)

Formfactors:

E787(BNL) Phys.Rev.Lett.85(2000)2256 $(K \rightarrow \mu v \gamma)$ $|F_V + F_A| = 0.165 \pm 0.013; -0.04 < F_V - F_A < 0.24$

ISTRA+ setup

$p\sim -25~{ m GeV}$; $\Delta p/p\sim 1.5\%$; $K^-\sim 3\%$; $I\sim 3\cdot 10^6/1.9~{ m sec}$

 $T_0 = S1 \cdot S2 \cdot S3 \cdot S4 \cdot C0 \cdot C1 \cdot C2 \cdot \overline{S5}$ (prescaled by a factor of ~10) $T_1 = T_0 \cdot (\sum SP1 > MIP)$

C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscope

ISTRA+: from $\pi \rightarrow e \nu \gamma$ to $K \rightarrow \mu \nu \gamma$

Event selection: strategy

- Track requirements
- Photon requirements
- Vertex requirements
- Particle ID

Event selection: track requirements

- Exactly one beam track in each projection
- Exactly one secondary track in each projection
- Secondary track is negatively charged
- track quality > 10^{-2} for each projection of beam track
- track quality > 0.1 for each projection of secondary track
- Angle between beam and secondary track > 2mrad (suppression of undecayed particles)

Event selection: photon requirements

- No photons in SP2 guard calorimeter
- No photons in GS

Event selection: vertex requirements

- -3 < x < 3 cm
- -2 < y < 6 cm
- 400 < z < 1600 cm
 (decay volume: 300-1200cm, SP2 guard calorimeter: z=1650cm)
- Vertex fit probability > 0.01

Event selection: particle ID

- Photon: shower in ECAL not associated with any track
- Muon:

 ADC sum in HCAL < 200
 relative energy deposition in last 3 layers of HCAL > 0.05

Spectrum tuning: strategy

- Trigger efficiency for photon
- Muon momentum kinematical calibration
- Photon energy kinematical calibration

Trigger efficiency ε for photon

Kinematical calibration

• General idea: use of 2-body kinematics

P_µ tuning: peaks in Kµ2 and Kπ2 must correspond to table values

• E_{γ} tuning: a peak in $E_{\pi 0}$ for K $\pi 2$ selection must correspond to table value

Background rejection

- Main backgrounds
- Primary cuts
- Kinematical variables and signal observation

Background rejection

- Main background:
- $K \rightarrow \mu \nu \pi^0 (K\mu 3)$

with 1 gamma lost (from $\pi^0 \rightarrow \gamma \gamma$)

• $K \rightarrow \pi \pi^0 (K\pi^2)$

with 1 gamma lost (from $\pi^0 \rightarrow \gamma \gamma$) and π misidentification

Background rejection: primary cuts

- Missing momentum in ECAL plane: central hole region is dominated by $K\pi 2$ and excluded
- Y-distance between muon and photon in ECAL plane: -20 < dy < 50 cm y, cm

Background rejection: kinematical variables

• Signal observation: $M(\mu v \gamma) = \sqrt{(P_{\mu} + P_{\nu} + P_{\gamma})^{2}}$ where $\vec{p}_{\nu} = \vec{p}_{\kappa} - \vec{p}_{\mu} - \vec{p}_{\gamma}$; $E_{\nu} = |\vec{p}_{\nu}|$ $M(\mu v \gamma)$ peaks at $M_{\kappa} = 0.494$ GeV for signal Background rejection procedure: scanning over (x,y) Dalits-plot and looking for a peak in $M(\mu v \gamma)$

Background rejection: Dalits-plot plot signal

Background rejection: (x,y) Dalits plot

Previous experiments: looking for signal near y kinematical border

ISTRA+: looking for signal near E_v kinematical border

Signal extraction: strategy

- X-stripes and distribution over y in x-stripes
- Cut on y in x-stripes
- $M(\mu v \gamma)$ in xy-stripes

Signal extraction: X-stripes, distribution over y, cut on y

- (x,y) dalits-plot is divided into stripes with δx=0.05 width (x-stripes)
- A cut on y is put in each stripe (xy-stripe)
- Ratio R=S/√(S+B) (S number of INT- events, B – IB+background) is used for putting cut on y within a particular stripe
- Maximum of R corresponds to minimal error

Signal extraction: X-stripes, distribution over y, cut on y

Signal extraction: fitting $M(\mu \vee \gamma)$ in xy-stripes

10.06.2009

ISTRA+ kinematical region: complementary with previous experiments

ISTRA+ result: complementary with previous experiments

experiment	collaboration	year	cuts	results
Barmin et al		1988	P_{μ} < 231.5 MeV/c	BR(IB)
Demidov et al		1990	P_{μ} < 231.5 MeV/c	BR(IB)
Akiba et al	E104 (KEK)	1985	214.5 < P _µ < 231.5 MeV/c	BR(IB)
Adler et al	E787 (BNL)	2000	P _μ > 218.4 MeV/c E _γ > 90 MeV	F _V + F _A
Akimenko et al	ISTRA+	2009	E _γ < 148 MeV (x<0.6)	$F_v - F_A$

conclusion

- The K→ μ v γ decay is observed at ISTRA+ setup in a new kinematical region
- The event number observed is 44K (the largest statistics in the world)
- First measurement of INT- term gives
 F_V-F_A=0.12±0.03(stat)±0.03(syst)
- The sign of INT- is negative
- The results are preliminary

To KAON09 organizers and participants

THANK YOU!!!